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Math 110 Notes

I scribed these notes during the Summer 2021 iteration of Math 110, which was taught by Dr. Mira Peterka. We followed Linear
Algebra Done Right by Sheldon Axler pretty closely and as such, you may notice several references to that textbook throughout
these notes. In the interest of time, we decided to skip several sections from LADR, like 3E (product and quotient spaces), 3F
(dual spaces) and 4 (polynomials). Moreover, we only skimmed chapters 9 (Operators on Real Vector Spaces) and 10 (Trace
and Determinant) and did not cover them in as much detail as the first 8 chapters.
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1 Lecture 1

1.1 Vector Spaces

Definition 1.1: Addition
A (vector) addition on a set 𝑉 is a function that assigns an element 𝑢 + 𝑣 ∈ 𝑉 for each pair of elements 𝑢, 𝑣 ∈ 𝑉 .

Definition 1.2: Multiplication
A (scalar) multiplication on a set 𝑉 is a function that assigns an element _𝑣 ∈ 𝑉 for each _ ∈ F (here F is a field) and
𝑣 ∈ 𝑉 .

The fields that we will commonly work with in this course are R (real numbers) and C (complex numbers). However, the
properties that we will prove should hold for any abstract field F that may be finite (ex. a Galois Field) or infinite.

Definition 1.3: Vector Space
A vector space over F is a set𝑉 along with an addition and a scalar multiplication on𝑉 such that the following properties
hold:

• Commutativity: 𝑢 + 𝑣 = 𝑣 + 𝑢 for all 𝑢, 𝑣 ∈ 𝑉

• Associativity: (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) and (𝑎𝑏)𝑣 = 𝑎(𝑏𝑣) for all 𝑢, 𝑣, 𝑤 ∈ 𝑉 and all 𝑎, 𝑏 ∈ F

• Additive Identity: there exists an element 0 ∈ 𝑉 such that 𝑣 + 0 = 𝑣 for all 𝑣 ∈ 𝑉

• Additive inverse: there exists a 𝑤 ∈ 𝑉 such that 𝑣 + 𝑤 = 0 for all 𝑣 ∈ 𝑉

• Multiplicative identity: there exists an element 1 ∈ F such that 1𝑣 = 𝑣 for all 𝑣 ∈ 𝑉

• Distributive properties: 𝑎(𝑢 + 𝑣) = 𝑎𝑢 + 𝑎𝑣 and (𝑎 + 𝑏)𝑣 = 𝑎𝑣 + 𝑏𝑣 for all 𝑢, 𝑣 ∈ 𝑉 and for all 𝑎, 𝑏 ∈ F

Example 1.1
Here are some common vector spaces:

1. R𝑛 =
{
(𝑢1, . . . , 𝑢𝑛) | 𝑢 𝑗 ∈ R

}
is a vector space over R for the operations:

(𝑢1, . . . , 𝑢𝑛) + (𝑣1, . . . , 𝑣𝑛) = (𝑢1 + 𝑣1, . . . , 𝑢𝑛 + 𝑣𝑛)
_(𝑢1, . . . , 𝑢𝑛) = (_𝑢1, . . . , _𝑢) for _ ∈ R

The additive identity is 0 = (0, . . . , 0) ∈ R𝑛.

2. F𝑛 =
{
(𝑢1, . . . , 𝑢𝑛) | 𝑢 𝑗 ∈ F

}
is a vector space over F for the same operations defined above.

3. F∞ =
{
(𝑢1, 𝑢2, . . . ) | 𝑢 𝑗 ∈ F, 𝑗 ≤ ∞

}
is a vector space over F for the operations:

(𝑢1, 𝑢2, . . . ) + (𝑣1, 𝑣2, . . . ) = (𝑢1 + 𝑣1, 𝑢2 + 𝑣2, . . . )
_(𝑢1, 𝑢2, . . . ) = (_𝑢1, _𝑢2, . . . ) for _ ∈ F

The additive identity is 0 = (0, 0, . . . ) ∈ F∞.

Example 1.2
Let 𝑆 be a set and F be a field. Then, F𝑆 = { 𝑓 : 𝑆 ↦→ F} denotes the set of all functions from 𝑆 to F and is a vector space
over the following operations:

( 𝑓 + 𝑔) (𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) ∀𝑥 ∈ 𝑆
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(_ 𝑓 ) (𝑥) = _ · 𝑓 (𝑥) ∀𝑥 ∈ 𝑆,∀_ ∈ F

The additive identity is the zero function: 0(𝑥) = 0 for all 𝑥 ∈ 𝑆.

Example 1.3
Let 𝑉 = R+ = {𝑥 ∈ R | 𝑥 > 0}. Define “𝑥 + 𝑦” = 𝑥𝑦 for 𝑥, 𝑦 ∈ 𝑉 as an addition that is generally considered ordinary
multiplication. Similarly, define “𝑐𝑥” = 𝑥𝑐 for 𝑐 ∈ R and 𝑥 ∈ 𝑉 as a multiplication that is generally considered ordinary
exponentiation. With these operations, 𝑉 is a vector space over R since

“𝑐(𝑥 + 𝑦)” = (𝑥𝑦)𝑐

= 𝑥𝑐𝑦𝑐

= “𝑐𝑥 + 𝑐𝑦”

Moreover, 1 is the additive identity (the 0 of this vector space) since “1 + 𝑥” = 1 · 𝑥 = “𝑥” for all 𝑥 ∈ 𝑉 .

1.2 Subspaces

Definition 1.4: Subspace
Suppose 𝑉 is a vector space over F. A subset 𝑈 ⊆ 𝑉 is a subspace of 𝑉 iff it

• has the additive identity: 0 ∈ 𝑈

• satisfies vector addition: 𝑢, 𝑣 ∈ 𝑈 =⇒ 𝑢 + 𝑣 ∈ 𝑈

• satisfies scalar multiplication: _ ∈ F, 𝑢 ∈ 𝑈 =⇒ _𝑢 ∈ 𝑈

Note 1.1
A subspace 𝑈 of 𝑉 is itself a vector space over the field F for the same addition and scalar multiplication operations
defined for 𝑉 .

Example 1.4
Let 𝑉 = R2. Then, 𝑉 has exactly one “2-dimensional” subspace, namely 𝑉 itself. Moreover, each line passing
through the origin is a “1-dimensional” subspace of 𝑉 . Finally, 𝑉 has exactly one “0-dimensional” subspace, which is
{0} = {(0, 0)} ∈ 𝑉 . We will formalize the notion of dimension later in the course.

Example 1.5
Here are some cases that are not examples of subspaces. Let 𝑉 = R2 for both cases.

• Let 𝑈 = {(𝑥, 𝑦) | 𝑦 ≥ 0} be the closed upper half of R2. Then,

1. 𝑈 contains the additive identity 0 = (0, 0) since 0 ≥ 0

2. 𝑈 is closed under addition, i.e., 𝑢 + 𝑣 ∈ 𝑈 for 𝑢, 𝑣 ∈ 𝑈

3. 𝑈 is not closed under scalar multiplication: note that (1, 1) ∈ 𝑈 and −1 ∈ R but −1 · (1, 1) = (−1,−1) ∉ 𝑈

• Let 𝑊 = {(𝑥, 𝑦) | 𝑥𝑦 ≥ 0} be the first and third quadrant of R2. Then,

1. 𝑊 contains the additive identity 0 = (0, 0) since 0 · 0 ≥ 0

2. 𝑊 is closed under scalar multiplication
3. 𝑊 is not closed under addition in𝑉 : note that 𝑢 = (1, 2) ∈ 𝑊 and 𝑤 = (−2,−1) ∈ 𝑊 but 𝑢+𝑤 = (−1, 1) ∉ 𝑊
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Definition 1.5: Sum of Subsets
Let 𝑉 be a vector space over F and 𝑈1, . . . ,𝑈𝑘 be subsets of 𝑉 . Then, we define

𝑈1 + · · · +𝑈𝑘 =
{
𝑢1 + · · · + 𝑢𝑘 | 𝑢 𝑗 ∈ 𝑈 𝑗 for 𝑗 ≤ 𝑘

}
Note 1.2
If 𝑈1, . . . ,𝑈𝑘 are subspaces of 𝑉 , then 𝑈1 + · · · +𝑈𝑘 is a subspace of 𝑉 too.

Definition 1.6: Direct Sum
Suppose 𝑈1, . . . ,𝑈𝑘 are subspaces of 𝑉 . The sum 𝑈1 + · · · +𝑈𝑘 is called a direct sum if each element of 𝑈1 + · · · +𝑈𝑘

can be written in one and one way only as a sum 𝑢1 + · · · + 𝑢𝑘 where each 𝑢 𝑗 ∈ 𝑈 𝑗 for 𝑗 ≤ 𝑘 . If 𝑈1 + · · · +𝑈𝑘 is a direct
sum, we can denote it by 𝑈1 ⊕ 𝑈2 ⊕ · · · ⊕ 𝑈𝑘 .

Theorem 1.1
Let 𝑈,𝑊 be subspaces of 𝑉 . Then 𝑈 +𝑊 is a direct sum iff 𝑈 ∩𝑊 = {0}.

Proof: We will prove both parts of the biconditional:

• Suppose 𝑥 ∈ 𝑈 ∩𝑊 and 𝑈 ∩𝑊 is a direct sum. Then, we write

𝑥 = 𝑢 + 0 𝑢 ∈ 𝑈, 0 ∈ 𝑊

𝑥 = 0 + 𝑤 0 ∈ 𝑈, 𝑤 ∈ 𝑊

Since 𝑈 +𝑊 is a direct sum, 𝑥 can only be written in one way which makes 𝑢 = 0 and 𝑤 = 0. So 𝑥 = 𝑢 + 𝑤 = 0 + 0 = 0
and 𝑈 ∩𝑊 = {0}.

• Now suppose 𝑢1 + 𝑤1 = 𝑥 = 𝑢2 + 𝑤2 where 𝑢1, 𝑢2 ∈ 𝑈, 𝑤1, 𝑤2 ∈ 𝑊 . Then, 𝑢1 − 𝑢2 = 𝑤2 − 𝑤1 for 𝑢1 − 𝑢2 ∈ 𝑈 and
𝑤2 − 𝑤1 ∈ 𝑊 . However, 𝑈 ∩𝑊 = {0} so 𝑢1 − 𝑢2 = 𝑤2 − 𝑤1 = 0 which implies 𝑢1 = 𝑢2 and 𝑤1 = 𝑤2. Thus, there is
only one way to write 𝑥 = 𝑢1 + 𝑤1, making 𝑈 +𝑊 a direct sum.

Note 1.3
This theorem works well for 2 subspaces but it does not generalize for 3 or more subspaces.

Example 1.6: 1C Exercise 20
Let 𝑈 =

{
(𝑥, 𝑥, 𝑦, 𝑦) ∈ F4 | 𝑥, 𝑦 ∈ F

}
. Find a subspace 𝑊 ⊆ R4 so that 𝑈 ⊕𝑊 = F4. There are many possible correct

answers. Two of them are:

• 𝑊 =
{
(𝑥,−𝑥, 𝑦,−𝑦) ∈ F4 | 𝑥, 𝑦 ∈ F

}
• 𝑊 =

{
(0, 𝑥, 0, 𝑦) ∈ F4 | 𝑥, 𝑦, ∈ F

}
Example 1.7: 1C Exercise 24
Let 𝑉 = RR. Define 𝑈𝑒 to be the set of even functions from R to R and 𝑈𝑜 to be the set of odd functions. Show that
RR = 𝑈𝑒 ⊕ 𝑈𝑜.

Proof: Showing that 𝑈𝑒 and 𝑈𝑜 are subspaces of RR is left as an exercise to the reader.

• We will appeal to the theorem above and show that 𝑈𝑒 ∩𝑈𝑜 = {0(𝑥)}, the zero function. If 𝑓 ∈ 𝑈𝑒 ∩𝑈𝑜, then
𝑓 (−𝑥) = 𝑓 (𝑥) and 𝑓 (−𝑥) = − 𝑓 (𝑥) for all 𝑥 ∈ R. Since 𝑓 (𝑥) = − 𝑓 (𝑥) for all 𝑥 ∈ R, this implies that 𝑓 (𝑥) = 0(𝑥)
so 𝑈𝑒 ∩𝑈𝑜 = {0(𝑥)} as expected.

• What does the direct sum look like? Suppose 𝑓 ∈ RR.
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Define 𝑓even (𝑥) = 𝑓 (𝑥 )+ 𝑓 (−𝑥 )
2 . Since

𝑓even (−𝑥) =
𝑓 (−𝑥) + 𝑓 (−(−𝑥))

2
=

𝑓 (−𝑥) + 𝑓 (𝑥)
2

= 𝑓even (𝑥)

we get that 𝑓even ∈ 𝑈𝑒.
Now consider 𝑓 − 𝑓even, which we need to show is in 𝑈𝑜. Note that

( 𝑓 − 𝑓even) (𝑥) = 𝑓 (𝑥) − 𝑓 (𝑥) + 𝑓 (−𝑥)
2

=
𝑓 (𝑥) − 𝑓 (−𝑥)

2

Then,

( 𝑓 − 𝑓even) (−𝑥) =
𝑓 (−𝑥) − 𝑓 (−(−𝑥))

2
= −

(
𝑓 (𝑥) − 𝑓 (−𝑥)

2

)
= −( 𝑓 − 𝑓even) (𝑥)

Thus, 𝑓 − 𝑓even ∈ 𝑈𝑜 as desired.
Now, 𝑓 (𝑥) = 𝑓even (𝑥) + ( 𝑓 − 𝑓even) (𝑥) ∈ 𝑈𝑒 +𝑈𝑜 so RR = 𝑈𝑒 ⊕ 𝑈𝑜.
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2 Lecture 2

2.1 Span

Definition 2.1: Linear Combination
Let 𝑉 be a vector space over a field F and let 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 . A linear combination of 𝑣1, . . . , 𝑣𝑘 is a vector of the form
𝑐1𝑣1 + · · · + 𝑐𝑘𝑣𝑘 where 𝑐1, . . . , 𝑐𝑘 ∈ F.

Definition 2.2: Span
The span of 𝑣1, . . . , 𝑣𝑘 is the set of all linear combinations of 𝑣1, . . . , 𝑣𝑘 , i.e.

span(𝑣1, . . . , 𝑣𝑘) = {𝑎1𝑣1 + · · · + 𝑎𝑘𝑣𝑘 | 𝑎1, . . . , 𝑎𝑘 ∈ F}

Note 2.1
Very common but not universal notation: let ∅ be the empty set/list. We declare that span(∅) = {0}.

Example 2.1
Is the vector (7, 8, 9) a linear combination of the vectors (1, 2, 3) and (4, 5, 6), i.e., is (7, 8, 9) ∈ span((1, 2, 3), (4, 5, 6))?
Note that span((1, 2, 3), (4, 5, 6)) is a plane in R2 so we are essentially asking if (7, 8, 9) lies on that plane. If it does, it
will satisfy

𝑐1


1
2
3

 + 𝑐2


4
5
6

 =


7
8
9


for some choice of 𝑐1 and 𝑐2. We will attempt to solve for those values in the following system

𝑐1 + 4𝑐2 = 7

2𝑐1 + 5𝑐2 = 8

3𝑐1 + 6𝑐2 = 9

We can row reduce the following matrix 
1 4 7
2 5 8
3 6 9


to get 𝑐1 = −1 and 𝑐2 = 2. Since


7
8
9

 = −1

1
2
3

 + 2


4
5
6

 , it must be a linear combination of the two given vectors.

Theorem 2.1
𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 =⇒ span(𝑣1, . . . , 𝑣𝑘) is a subspace of 𝑉 .

Proof: We will check all three conditions for subspaces:

• Identity: 0 = 0𝑣1 + · · · + 0𝑣𝑘 so 0 ∈ span(𝑣1, . . . , 𝑣𝑘)

• Addition: suppose 𝑢, 𝑤 ∈ span(𝑣1, . . . , 𝑣𝑘). Then, there are 𝑎1, . . . , 𝑎𝑘 , 𝑏1, . . . , 𝑏𝑘 ∈ F such that

𝑢 = 𝑎1𝑣1 + · · · + 𝑎𝑘𝑣𝑘

𝑤 = 𝑏1𝑣2 + · · · + 𝑏𝑘𝑣𝑘

Linear Algebra 8
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so,

𝑢 + 𝑤 = 𝑎1𝑣1 + · · · + 𝑎𝑘𝑣𝑘 + 𝑏1𝑣1 + · · · + 𝑏𝑘𝑣𝑘

= (𝑎1 + 𝑏1)𝑣1 + · · · + (𝑎𝑘 + 𝑏𝑘)𝑣𝑘
∈ span(𝑣1, . . . , 𝑣𝑘)

• Scalar Multiplication: if 𝑢 = 𝑎1𝑣1 + · · · + 𝑎𝑘𝑣𝑘 ∈ span(𝑣1, . . . , 𝑣𝑘) and _ ∈ F, then

_𝑢 = _(𝑎1𝑣1 + · · · + 𝑎𝑘𝑣𝑘)
= (_𝑎1)𝑣1 + · · · + (_𝑎𝑘)𝑣𝑘
∈ span(𝑣1, . . . , 𝑣𝑘)

Theorem 2.2
If 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 , then span(𝑣1, . . . , 𝑣𝑘) is the smallest subspace of 𝑉 containing 𝑣1, . . . , 𝑣𝑘 , i.e., span(𝑣1, . . . , 𝑣𝑘) is
the subspace of 𝑉 generated by 𝑣1, . . . , 𝑣𝑘 .

Proof: Suppose 𝑊 ⊆ 𝑉 is a subspace of 𝑉 and that 𝑣1, . . . , 𝑣𝑘 ∈ 𝑊 . Then any linear combination of 𝑣1, . . . , 𝑣𝑘 must be in 𝑊

since 𝑊 is a subspace of 𝑉 . So, span(𝑣1, . . . , 𝑣𝑘) ⊆ 𝑊 . In other words, every subspace 𝑊 of 𝑉 that contains a list of vectors
will also contain their span.

Definition 2.3: Finite-dimensional
A vector space 𝑉 is finite-dimensional if 𝑉 is spanned by some finite list of vectors, i.e., 𝑉 = span(𝑣1, . . . , 𝑣𝑚) for some
list 𝑣1, . . . , 𝑣𝑚.

Example 2.2
We know that R3 is finite-dimensional as it is spanned by

𝑒1 =


1
0
0

 , 𝑒2 =


0
1
0

 , 𝑒3 =


0
0
1


Similarly, R2 is also finite-dimensional since it is spanned by

𝑒1 =

[
1
0

]
, 𝑒2 =

[
0
1

]
or some other set of vectors like

𝑣1 =

[
1
0

]
, 𝑣2 =

[
2
2

]
, 𝑣3 =

[
4
1

]
Theorem 2.3
Let 𝑝 be a polynomial with real coefficients. If

𝑝(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0

= 𝑏𝑚𝑥
𝑚 + 𝑏𝑚−1𝑥

𝑚−1 + · · · + 𝑏1𝑥 + 𝑏0

where 𝑎𝑛 ≠ 0 and 𝑏𝑚 ≠ 0, then 𝑛 = 𝑚. Therefore, 𝑝 has a well-defined degree, namely deg(𝑝(𝑥)) = 𝑛 = 𝑚.

Proof: WLOG, suppose 𝑛 > 𝑚. Then,

d𝑛+1

d𝑥𝑛+1
𝑝(𝑥) = d𝑛+1

d𝑥𝑛+1
(𝑎𝑛𝑥𝑛 + · · · + 𝑎1𝑥 + 𝑎0)

Linear Algebra 9
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= 𝑛!𝑎𝑛

≠ 0

On the other hand,

d𝑛+1

d𝑥𝑛+1
𝑝(𝑥) = d𝑛+1

d𝑥𝑛+1
(𝑏𝑚𝑥𝑚 + · · · + 𝑏1𝑥 + 𝑏0)

= 0

This is contradiction, which also holds for 𝑚 > 𝑛, so 𝑛 = 𝑚.

Example 2.3
Let P be the set of all polynomials. Then P is infinite-dimensional, i.e., not finite-dimensional.

Proof: Suppose P = span(𝑝1, . . . , 𝑝𝑘). Let 𝑗 be the max degree of 𝑝1, . . . , 𝑝𝑘 . Consider 𝑥 𝑗+1. Note that

𝑥 𝑗+1 ∉ span(𝑣1, . . . , 𝑣𝑘)

since deg(𝑥 𝑗+1) = 𝑗 + 1 where any linear combination of 𝑣1, . . . , 𝑣𝑘 has degree at most 𝑗 . So, we can always keep
appending terms like 𝑥 𝑗+1 to the list of vectors that span P , which implies that P is not finite-dimensional.

2.2 Linear Independence

Definition 2.4: Linearly Independent
The vectors 𝑣1, . . . , 𝑣𝑘 are linearly independent iff they satisfy the trivial relation, i.e., 𝑐1𝑣1 + · · · + 𝑐𝑘𝑣𝑘 = 0 =⇒ 𝑐1 =

𝑐2 = · · · = 𝑐𝑘 = 0.

Definition 2.5: Linearly Dependent
If 𝑣1, . . . , 𝑣𝑘 are not linearly independent, we say that they are linearly dependent. In other words, 𝑣1, . . . , 𝑣𝑘 are linearly
dependent if there are 𝑐1, . . . , 𝑐𝑘 ∈ F such that there is at least one 𝑐 𝑗 ≠ 0 and 𝑐1𝑣1 + · · · + 𝑐𝑘𝑣𝑘 = 0.

Note 2.2
We declare that the empty list is linearly independent.

Note 2.3
Any list with the 0 vector is linearly dependent.

Example 2.4

Consider 𝑤1 =


1
1
1

 , 𝑤2 =


2
2
2

 and 𝑤3 =


3
3
3

 in R3. Then,

2𝑤1 − 1𝑤2 + 0𝑤3 = 0

0𝑤1 + 3𝑤2 − 2𝑤3 = 0

so 𝑤1, 𝑤2, 𝑤3 are clearly linearly dependent. Moreover, span(𝑤1, 𝑤2, 𝑤3) = span
©«

1
1
1

ª®¬ is a line in R3.
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Theorem 2.4: Linear Dependence Lemma
If 𝑣1, . . . , 𝑣𝑚 are linearly dependent, then the Linear Dependence Lemma (LDL) states that there is some 𝑗 ≤ 𝑚 such
that

• 𝑣 𝑗 ∈ span(𝑣1, . . . , 𝑣 𝑗−1)

• span(𝑣1, . . . , 𝑣𝑚) = span(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑚) where the RHS denotes the span with 𝑣 𝑗 removed from the list

Proof: We will prove both parts:

• If 𝑣1, . . . , 𝑣𝑚 are linearly dependent, then we can find coefficients 𝑎1, . . . , 𝑎𝑚, not all 0, so that 𝑎1𝑣1 + · · · + 𝑎𝑚𝑣𝑚 = 0.
Let 𝑗 be the largest 𝑘 ≤ 𝑚 such that 𝑎𝑘 ≠ 0. Then,

𝑎1𝑣1 + · · · + 𝑎 𝑗𝑣 𝑗 = 0

𝑎 𝑗𝑣 𝑗 = −𝑎1𝑣1 − · · · − 𝑎 𝑗−1𝑣 𝑗−1

𝑣 𝑗 = −𝑎1

𝑎 𝑗

𝑣1 − · · · −
𝑎 𝑗−1

𝑎 𝑗

𝑣 𝑗−1

∈ span(𝑣1, . . . , 𝑣 𝑗−1)

• If 𝑢 = 𝑐1𝑣1 + · · · + 𝑐𝑚𝑣𝑚, substitute the expression for 𝑣 𝑗 above to get

𝑢 = 𝑐1𝑣1 + · · · + 𝑐 𝑗−1𝑣 𝑗−1 + 𝑐 𝑗𝑣 𝑗 + 𝑐 𝑗+1𝑣 𝑗+1 + · · · + 𝑐𝑚𝑣𝑚

= 𝑐1𝑣1 + · · · + 𝑐 𝑗−1𝑣 𝑗−1 + 𝑐 𝑗

(
−𝑎1

𝑎 𝑗

𝑣1 − · · · −
𝑎 𝑗−1

𝑎 𝑗

𝑣 𝑗−1

)
+ 𝑐 𝑗+1𝑣 𝑗+1 + · · · + 𝑐𝑚𝑣𝑚

=

(
𝑐1 −

𝑎1

𝑎 𝑗

𝑐 𝑗

)
𝑣1 + · · · +

(
𝑐 𝑗−1 +

𝑎 𝑗−1

𝑎 𝑗

𝑐 𝑗

)
𝑣 𝑗−1 + 𝑐 𝑗+1𝑣 𝑗+1 + · · · + 𝑐𝑚𝑣𝑚

Thus, span(𝑣1, . . . , 𝑣𝑚) = span(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑚) since any vector 𝑢 in the first set can be rewritten as a vector in the
second set.

Note 2.4
If 𝑗 = 1, then 𝑣1 = 0 and 𝑢 = 𝑐2𝑣2 + · · · + 𝑐𝑚𝑣𝑚. This is precisely because span(∅) can be defined as {0}.

Theorem 2.5
Suppose 𝑢1, . . . , 𝑢𝑚 are linearly independent in 𝑉 and 𝑤1, . . . , 𝑤𝑛 span 𝑉 . Then, 𝑚 ≤ 𝑛.

Proof: Look at 𝑢1, 𝑤1, . . . , 𝑤𝑛. Since 𝑢1 ∈ span(𝑤1, . . . , 𝑤𝑛), the list 𝑢1, 𝑤1, . . . , 𝑤𝑛 is linearly dependent. Then, the Linear
Dependence Lemma applies here and some 𝑤 𝑗 can be removed from 𝑢1, 𝑤1, . . . , 𝑤𝑛 such that span(𝑢1, 𝑤1, . . . , �̂� 𝑗 , . . . 𝑤𝑚) =
span(𝑢1, 𝑤1, . . . , 𝑤𝑛) = 𝑉 .
How do we know that 𝑢1 is not the vector that gets removed? If it was, it would imply that 𝑢1 = 0 (see note 1.4). However, this
would be a contradiction to the linear independence of 𝑢1, . . . , 𝑢𝑚 (see note 1.3). Thus, it really had to have been a 𝑤 𝑗 vector
that was removed.
Next, insert 𝑢2 into the second slot of this list to get 𝑢1, 𝑢2, 𝑤1, . . . , �̂� 𝑗 , . . . , 𝑤𝑚. This list is once again linearly dependent since
𝑢2 ∈ 𝑉 =⇒ 𝑢2 ∈ span(𝑤1, . . . , 𝑤𝑛) = span(𝑢1, 𝑤1, . . . , �̂� 𝑗 , . . . , 𝑤𝑚), and the LDL can be applied here. Due to the same
reasoning as above, 𝑢1 is not removed from the spanning list. However, neither is 𝑢2 since 𝑢2 ∉ span(𝑢1) (recall the first part
of LDL) and 𝑢1, 𝑢2 are linearly independent. Therefore, one of the 𝑤𝑖 vectors must be removed again, which will yield a new
list 𝑢1, 𝑢2, 𝑤1, . . . , �̂�𝑖 , . . . , �̂� 𝑗 , . . . , 𝑤𝑛 (it is entirely possible that 𝑤1 was removed instead — WLOG, we just assumed that
1 < 𝑖 < 𝑗 < 𝑛 here) for 𝑖 ≠ 𝑗 that spans 𝑉 .

...
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Next, insert the vector 𝑢 𝑗 after 𝑢 𝑗−1 into the list above, which will make it linearly dependent once again. However, since
𝑢1, . . . , 𝑢 𝑗 themselves are linearly independent, by the LDL, some vector to the right of 𝑢 𝑗 , i.e. a 𝑤 vector, can be removed
from the spanning list, which will continue to span 𝑉 . Notice that the exact same logic that was applied to the 𝑗 = 2 case above
generalizes here as well.

...

We can repeat this process until all of 𝑢1, . . . , 𝑢𝑚 has been inserted into the spanning list. The list still contains 𝑛 vectors since
every vector appended is also followed by a single removal. The first 𝑚 vectors are 𝑢1, . . . , 𝑢𝑚 so we are left with 𝑛 −𝑚 total 𝑤
vectors in the end. Since this new list also spans 𝑉 and the number of vectors can never physically be negative, it would follow
that 𝑛 − 𝑚 ≥ 0 =⇒ 𝑛 ≥ 𝑚.

Theorem 2.6
If 𝑉 is a finite-dimensional vector space and 𝑈 is a subspace of 𝑉 , then 𝑈 is also finite-dimensional.

Proof: If 𝑈 = {0}, then it is finite-dimensional. Otherwise, choose some 𝑢1 ≠ 0 in 𝑈. Then, either 𝑈 = span(𝑢1) and we are
done, or there is some 𝑢2 ∈ 𝑈 not in span(𝑢1), i.e., 𝑢1, 𝑢2 are linearly independent. Similarly, either span(𝑢1, 𝑢2) = 𝑈 or there
is a third vector 𝑢3 ∈ 𝑈 such that 𝑢3 ∉ span(𝑢1, 𝑢2), i.e., 𝑢1, 𝑢2, 𝑢3 are linearly independent.
We can continue this process, which must eventually terminate. Why? Suppose 𝑤1, . . . , 𝑤𝑚 spans 𝑉 . Then, by the theorem
above, no list in 𝑉 and, therefore, no spanning list in 𝑈 can be of length 𝑚 + 1 or more.

2.3 Discussion Problems

Problem 2.1
Prove that if 𝑣𝑛 ∉ span(𝑣1, . . . , 𝑣𝑛−1) and 𝑣1, . . . , 𝑣𝑛−1 are linearly independent, then 𝑣1, . . . , 𝑣𝑛 are also linearly
independent.

Answer: Suppose 𝑐1𝑣1 + . . . 𝑐𝑛𝑣𝑛 = 0. Thus, 𝑐𝑛𝑣𝑛 = −𝑐1𝑣1 − · · · − 𝑐𝑛−1𝑣𝑛−1. However, 𝑣𝑛 ∉ span(𝑣1, . . . , 𝑣𝑛−1)
which implies that 𝑐𝑛 = 0. So, 𝑐1𝑣1 + · · · + 𝑐𝑛−1𝑣𝑛−1 + 0𝑣𝑛 = 0. However, 𝑣1, . . . , 𝑣𝑛−1 are already linearly independent
as given, so 𝑐1 = · · · = 𝑐𝑛−1 = 0. Since all 𝑐𝑖 are 0, the list 𝑣1, . . . , 𝑣𝑛 is indeed linearly independent.

Problem 2.2

Let 𝑤1 =


1

−1
0

 , 𝑤2 =


1
1
2

 and 𝑤3 =


0
2
2

 . Are span(𝑤1, 𝑤2) and span(𝑤1, 𝑤2) the same subspace in R3?

Answer: Note that 𝑤1 is in both sets. Also observe that 𝑤3 = 𝑤2−𝑤1. Thus, span(𝑤1, 𝑤3) ⊆ span(𝑤1, 𝑤2). Similarly,
𝑤2 = 𝑤3 + 𝑤1. Thus, span(𝑤1, 𝑤2) ⊆ span(𝑤1, 𝑤3). Therefore, they are the same sets.

Problem 2.3
If 𝑣1, . . . , 𝑣𝑘 ∈ 𝑉 are linearly independent, is it possible that 𝑢1, . . . , 𝑢𝑘−1 spans 𝑉?

Answer: No! The length of any spanning list is less than or equal to the length of any list of linearly independent vectors.

Problem 2.4
Prove true or give a counterexample: If 𝑣1, 𝑣2, 𝑣3 are linearly dependent, then any 𝑣𝑖 for 𝑖 = 1, 2, 3 can be written as a
linear combination of the other two.

Answer: Consider 𝑣1 =

[
1
0

]
, 𝑣2 =

[
0
1

]
and 𝑣3 =

[
2
0

]
. Note that 𝑣2 is not a linear combination of 𝑣1 and 𝑣3.
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Problem 2.5
Express 𝑉 = R2 = 𝑈 ⊕𝑊 = 𝑈 ⊕𝑊 ′ where 𝑈 = {(𝑥, 0) | 𝑋 ∈ R} and 𝑊 ≠ 𝑊 ′.

Answer: Consider 𝑊 = {(0, 𝑦) | 𝑦 ∈ R} and 𝑊 ′ = {(𝑦, 𝑦) | 𝑦 ∈ R}.

Problem 2.6
Let P (F) be the set of polynomials with coefficients in F. Show that 𝑥𝑛 and 𝑥𝑚 are linearly independent if 𝑛 ≠ 𝑚.

Answer: Let 𝑎, 𝑏 ∈ F such that 𝑎𝑥𝑛 + 𝑏𝑥𝑛 = 0. For 𝑥 = 1, we get 𝑎 + 𝑏 = 0 =⇒ 𝑏 = −𝑎. Then, 𝑎𝑥𝑛 − 𝑎𝑥𝑚 = 0 =⇒
𝑎(𝑥𝑛 − 𝑥𝑚) = 0. Assume that 𝑎 ≠ 0. Then, 𝑎(𝑥𝑛 − 𝑥𝑚) = 0 =⇒ 𝑥𝑛 − 𝑥𝑚 = 0 =⇒ 𝑥𝑛 = 𝑥𝑚. This is a contradiction so
𝑎 = 0 and consequently, 𝑏 = 0. Thus, 𝑥𝑛 and 𝑥𝑚 are linearly independent.

Note that this statement only holds for fields like R and C but does not necessarily work in finite fields like Z3.
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Math 110, Summer 2021 Notes Aryan Jain

3 Lecture 3

3.1 Basis and Dimension

Definition 3.1: Basis
A list of vectors in 𝑉 is a basis for 𝑉 if the list is linearly independent and it spans 𝑉 .

Note 3.1
The list 𝑣1, . . . , 𝑣𝑛 is a basis for 𝑉 iff every 𝑣 ∈ 𝑉 can be written uniquely in the form 𝑣 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 for some
𝑎1, . . . , 𝑎𝑛 ∈ F.

Theorem 3.1
If span(𝑣1, . . . , 𝑣𝑘) = 𝑉 , then some sub-list (possibly the entire list) of 𝑣1, . . . , 𝑣𝑘 is a basis for 𝑉 .

Proof: If 𝑣1, . . . , 𝑣𝑘 are linearly independent, then it is a basis of 𝑉 and we are done. Otherwise, by the LDL, we can throw
away some 𝑣 𝑗 such that span(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑘) = 𝑉 . If 𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑘 is linearly independent, it is a basis for𝑉 and we are
done. Otherwise, apply the LDL once again and remove some 𝑣𝑙 to obtain the list 𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑙 , . . . , 𝑣𝑘 for 𝑗 ≠ 𝑙 (WLOG,
let 𝑗 < 𝑙) that still spans 𝑉 . If it is linearly independent, then we are done or we can continue repeating this same process.
The process must terminate within 𝑘 < ∞ steps, or we will be left with 𝑉 = span(∅) = {0} after everything in 𝑣1, . . . , 𝑣𝑘 is
discarded. Moreover, one this process terminates, we can only be left with a linearly independent list of vectors, which will
form the basis of 𝑉 .

Note 3.2
An immediate conclusion of the theorem above is that every finite-dimensional vector space has a basis.

Theorem 3.2
If 𝑣1, . . . , 𝑣𝑛 and 𝑢1, . . . , 𝑢𝑚 are two bases of 𝑉 , then 𝑛 = 𝑚.

Proof: Since 𝑢1, . . . , 𝑢𝑚 is linearly independent and 𝑣1, . . . , 𝑣𝑛 spans 𝑉 , we know that 𝑚 ≤ 𝑛. However, since 𝑣1, . . . , 𝑣𝑛 is
linearly independent and 𝑢1, . . . , 𝑢𝑚 spans 𝑉 , we also know that 𝑛 ≤ 𝑚. These two inequalities imply that 𝑚 = 𝑛.

Definition 3.2: Dimension
If 𝑉 is finite-dimensional, then dim𝑉 is the length of any basis of 𝑉 .

Example 3.1
Let 𝑉 = R𝑛 and 𝑒1, . . . , 𝑒𝑛 be the standard basis for R𝑛. Any other basis of R𝑛 can be related to 𝑒1, . . . , 𝑒𝑛 by a change
of basis matrix: applying an 𝑛 × 𝑛 invertible matrix 𝐴 to 𝑒1, . . . , 𝑒𝑛 will yield another valid basis 𝐴𝑒1, . . . , 𝐴𝑒𝑛. In fact,
one can rewrite 𝐴 as

𝐴 =
[
𝐴𝑒1 . . . 𝐴𝑒𝑛

]
where each 𝐴𝑒𝑖 forms the 𝑖th column of 𝐴.

Example 3.2
Let P𝑚 (F) be the set of all polynomials with degree at most 𝑚. Then, P𝑚 is an 𝑚 + 1 dimensional vector space over F
with basis 1, 𝑥, 𝑥2, . . . , 𝑥𝑚.
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Example 3.3
The same vector space can have different dimensions over different fields. The vector space C defined over the field C
has dimension 1, but defined over the field R has dimension 2.

Theorem 3.3
Any linearly independent list 𝑣1, . . . , 𝑣𝑘 in a finite-dimensional vector space 𝑉 can be extended to form a basis for 𝑉 .

Proof: Does 𝑣1, . . . , 𝑣𝑘 initially span 𝑉? If so, then it is already a basis and we are done.
If not, then there is a 𝑣𝑘+1 ∈ 𝑉 such that 𝑣𝑘+1 ∉ span(𝑣1, . . . , 𝑣𝑘). Then, 𝑣1, . . . , 𝑣𝑘 , 𝑣𝑘+1 must be linearly independent (recall
problem 1.1 from last discussion). Check again: if this new list spans 𝑉 , then it is a basis for 𝑉 and we are done.
If not, then there is a 𝑣𝑘+2 ∈ 𝑉 such that 𝑣𝑘+2 ∉ span(𝑣1, . . . , 𝑣𝑘+1). Then, again, 𝑣1, . . . , 𝑣𝑘 , 𝑣𝑘+1, 𝑣𝑘+2 must be linearly
independent. If it spans 𝑉 , then it is a basis, and if not, continue this whole process.
It must eventually terminate, yielding a basis for 𝑉 , because the length of the list of linearly independent vectors must be not be
greater than the dimension of 𝑉 .

Theorem 3.4
If 𝑈 is a subspace of 𝑉 and dim𝑉 < ∞, then dim𝑈 ≤ dim𝑉 .

Proof: Since𝑉 is finite dimensional, then so is𝑈 with, say, dim𝑈 = 𝑘 . Thus,𝑈 has a basis 𝑢1, . . . , 𝑢𝑘 . In particular, 𝑢1, . . . , 𝑢𝑘
is a linearly independent list in 𝑈, which following the definition of a subspace, must also be a linearly independent list in
𝑉 . So, by the theorem above, the list 𝑢1, . . . , 𝑢𝑘 can be extended to form a basis 𝑢1, . . . , 𝑢𝑘 , 𝑣1, . . . , 𝑣dim𝑉−𝑘 of 𝑉 . Since
dim𝑉 − 𝑘 ≥ 0, we get that 𝑘 ≤ dim𝑉 =⇒ dim𝑈 ≤ dim𝑉 .

Theorem 3.5
If𝑉 is a finite-dimensional vector space and𝑈 ⊆ 𝑉 a subspace, then there exists a subspace𝑊 of𝑉 such that𝑉 = 𝑈 ⊕𝑊 .

Proof: Let dim𝑈 = 𝑘 and dim𝑉 = 𝑛. Choose a basis of 𝑈 such as 𝑢1, . . . , 𝑢𝑘 . Extend this basis to 𝑉 , by ap-
pending any additional vectors as appropriate to get 𝑢1, . . . , 𝑢𝑘 , 𝑤1, . . . , 𝑤𝑛−𝑘 . Let 𝑊 = span(𝑤1, . . . , 𝑤𝑛−𝑘). Since
span(𝑢1, . . . , 𝑢𝑘 , 𝑤1, . . . , 𝑤𝑛−𝑘) = 𝑉 , for any 𝑣 ∈ 𝑉 , there are scalars 𝑐1, . . . , 𝑐𝑘 , 𝑑1, . . . , 𝑑𝑛−𝑘 ∈ F such that

𝑣 = 𝑐1𝑢1 + · · · + 𝑐𝑘𝑢𝑘 + 𝑑1𝑤1 + · · · + 𝑑𝑛−𝑘𝑤𝑛−𝑘

so 𝑉 = 𝑈 +𝑊 .
To show 𝑉 = 𝑈 ⊕𝑊 , we now need to show that 𝑈 ∩𝑊 = {0}. If 𝑥 ∈ 𝑈 ∩𝑊 , then 𝑥 ∈ 𝑈 and 𝑥 ∈ 𝑊 . Since 𝑥 ∈ 𝑈, it can be
written as 𝑥 = 𝑐1𝑢1 + · · · + 𝑐𝑘𝑢𝑘 + 0𝑤1 + · · · + 0𝑤𝑛−𝑘 for some 𝑐1, . . . , 𝑐𝑘 ∈ F. Similarly, since 𝑥 ∈ 𝑊 , it can be written as
𝑥 = 0𝑢1 + · · · + 0𝑢𝑘 + 𝑑1𝑤1 + · · · + 𝑑𝑛−𝑘𝑤𝑛−𝑘 for some 𝑑1, . . . , 𝑑𝑛−𝑘 ∈ F. Writing these next to each other, notice that

𝑥= 𝑐1𝑢1 + · · · + 𝑐𝑘𝑢𝑘 + 0𝑤1 + · · · + 0𝑤𝑛−𝑘

= 0𝑢1 + · · · + 0𝑢𝑘 + 𝑑1𝑤1 + · · · + 𝑑𝑛−𝑘𝑤𝑛−𝑘

Comparing term by term will give us 𝑐1𝑢1+· · ·+𝑐𝑘𝑢𝑘 = 0 and 𝑑1𝑤1+· · ·+𝑑𝑛−𝑘𝑤𝑛−𝑘 = 0. However, both of these lists are linearly
independent, which implies that 𝑐1 = · · · = 𝑐𝑘 = 0 and 𝑑1 = · · · = 𝑑𝑛−𝑘 = 0. Thus, 𝑥 = 0𝑢1 + · · · + 0𝑢𝑘 + 0𝑤1 + · · · + 0𝑤𝑛−𝑘 = 0.
Since an arbitrary 𝑥 ∈ 𝑈 ∩𝑊 was considered, this implies that 𝑈 ∩𝑊 = {0}, as desired.

Theorem 3.6
If 𝑈1 and 𝑈2 are finite-dimensional subspaces of a vector space 𝑉 , then

dim(𝑈1 +𝑈2) = dim𝑈1 + dim𝑈2 − dim(𝑈1 ∩𝑈2)
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3.2 Discussion Problems

Problem 3.1
Suppose dim𝑉 = 5. If 𝛼 is a list of length 4 of vectors in 𝑉 , which of the following are possible?

1. 𝛼 is linearly independent

2. 𝛼 is linearly dependent

3. span(𝛼) = 𝑉

4. span(𝛼) ≠ 𝑉

Answer the same questions for 𝛽, a list of length 6 in 𝑉 .

Answer: For 𝛼, items 1 and 2 may be true, item 3 is never true (need a list of length 5 to span 𝑉) and as such, item 4 is
always true. For 𝛽, item 1 is impossible and item 2 is always true (there are 5 linearly independent basis vectors so a 6th
one must always be in their span), and items 3 and 4 are possible.

Problem 3.2
Suppose dim𝑉 = 𝑛 and 𝛼 is a list of length 𝑛 of vectors in 𝑉 . Explain why, if 𝛼 is linearly independent, it must be a
basis for 𝑉 .

Answer: We can extend 𝛼 to a basis for 𝑉 . However, any basis of 𝑉 has length 𝑛, so any extension of 𝛼 that is a basis of
𝑉 must be 𝛼 itself.

Problem 3.3
Suppose dim𝑉 = 𝑛 and 𝛼 is a list of length 𝑛 of vectors in 𝑉 . Explain why, if span(𝛼) = 𝑉 , it must be a basis for 𝑉 .

Answer: We can reduce 𝛼 to a basis for 𝑉 . However, any basis of 𝑉 has the same length as 𝛼, so any reduction of 𝛼
must be to 𝛼 itself. Thus, 𝛼 is a basis for 𝑉 .

Problem 3.4
Prove that if 𝑈 is a subspace of 𝑉 with dim𝑈 = dim𝑉 = 𝑛, then 𝑈 = 𝑉 .

Answer: Suppose 𝑢1, . . . , 𝑢𝑛 is a basis of𝑈. It is therefore a linearly independent list of length 𝑛 in𝑉 too, which implies
it is a basis for 𝑉 . Then, 𝑈 = span(𝑢1, . . . , 𝑢𝑛) = 𝑉 .

Problem 3.5
Show that the space 𝐶 (R) = {continous functions 𝑓 : R ↦→ R} is infinite-dimensional.

Answer: Note that P (R) is a subspace of 𝐶 (R), so dimP (R) ≤ dim𝐶 (R). However, P (R) is infinite-dimensional,
which implies that 𝐶 (R) is infinite-dimensional as well.

This provides an example of 𝑈 ⊂ 𝑉 such that dim𝑈 = dim𝑉 = ∞. Consider sin(𝑥) ∈ 𝐶 (R). Since sin(𝑥) has
infinitely many roots, it is not in P (R).

Problem 3.6
If 𝑣1, . . . , 𝑣4 is a basis of 𝑉 and 𝑈 is a subspace of 𝑉 such that 𝑣1, 𝑣2 ∈ 𝑈 but 𝑣3, 𝑣4 ∉ 𝑈, must 𝑣1, 𝑣2 be a basis of 𝑈?

Answer: No — 𝑈 could be span(𝑣1, 𝑣2, 𝑣3 + 𝑣4)
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Problem 3.7
Let 𝑈 =

{
𝑝 ∈ P4 (R) |

∫ 1

−1 𝑝(𝑥) d𝑥 = 0
}
. Find a basis of 𝑈.

Answer: Since 𝑝 ∈ P4 (R), every such polynomial is of the form 𝑝(𝑥) = 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒. Then,∫ 1

−1
𝑝(𝑥) d𝑥 = 0∫ 1

−1
(𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒) d𝑥 = 0

𝑎𝑥5

5
+ 𝑏𝑥4

4
+ 𝑐𝑥3

3
+ 𝑑𝑥2

2
+ 𝑒𝑥

����1
−1

= 0

2𝑎

5
+ 2𝑐

3
+ 2𝑒 = 0

Thus, 𝑏 and 𝑑 are arbitrary so you can take 𝑥3 and 𝑥 as two basis elements. Now, observe that∫ 1

−1

(
𝑥4 − 1

5

)
d𝑥 =

𝑥5

5
− 𝑥

5

����1
−1

=
2

5
− 2

5
= 0∫ 1

−1

(
𝑥2 − 1

3

)
d𝑥 =

𝑥3

3
− 𝑥

3

����1
−1

=
2

3
− 2

3
= 0

Thus, these are possible basis elements of degree 4 and 2. Since the only constant function that belongs in 𝑈 is the zero
function 0(𝑥) = 0, there is no basis element of degree 0. Therefore, one possible basis of 𝑈 is 𝑥4 − 1

5 , 𝑥
3, 𝑥2 − 1

3 , 𝑥.
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4 Lecture 4

4.1 Linear Maps

Definition 4.1: Linear Map/Transformation
Let 𝑉 and 𝑊 be two vector spaces over the same field F. A mapping 𝑇 : 𝑉 ↦→ 𝑊 is a linear map/linear transformation if
it satisfies:

𝑇 (𝑢 + 𝑣) = 𝑇 (𝑢) + 𝑇 (𝑣) (additivity)
𝑇 (𝑐𝑣) = 𝑐𝑇 (𝑣) (homogeneity)

for 𝑢, 𝑣 ∈ 𝑉 and 𝑐 ∈ F.

A linear map 𝑇 : 𝑉 ↦→ 𝑊 is a map that “respects” the vector space structures on 𝑉 and 𝑊 , or is “compatible” with the vector
space structures on 𝑉 and 𝑊 .

Example 4.1
Here is a non-example of a linear map. Consider 𝑇 : R ↦→ R where 𝑇 (𝑥) = 𝑥2. Lets look at the two properties of a linear
transformation:

• 𝑇 (𝑥 + 𝑦) = (𝑥 + 𝑦)2 ≠ 𝑥2 + 𝑦2 = 𝑇 (𝑥) + 𝑇 (𝑦)

• 𝑇 (𝑐𝑥) = (𝑐𝑥)2 = 𝑐2𝑥2 ≠ 𝑐𝑥2 = 𝑐𝑇 (𝑥)

Thus, 𝑇 is neither additive nor homogenous.

Example 4.2
Suppose 𝑇 : R ↦→ R is linear. Then, there exists a unique 𝑚 such that 𝑇 = 𝑇𝑚 where 𝑇𝑚 (𝑥) = 𝑚𝑥 for all 𝑥 ∈ R.

Proof: Let 𝑒1 = 1 ∈ 𝑉 = R be a basis for 𝑉 . Then, 𝑇 (𝑥) = 𝑇 (𝑥 · 𝑒1) = 𝑇 (𝑥 · 1) = 𝑥𝑇 (1) = 𝑇 (1)𝑥. This holds because R
is both 𝑉 and F in this case. Conclusion: 𝑇 (𝑥) = 𝑇𝑚 (𝑥) = 𝑚𝑥 where 𝑚 = 𝑇 (1).

Example 4.3
Similar technique shows that if 𝑇 : R2 ↦→ R is linear, then 𝑇 (𝑥, 𝑦) = 𝑎𝑥 + 𝑏𝑦 for all 𝑥, 𝑦 ∈ R for some 𝑎, 𝑏 ∈ R.

Note 4.1
Suppose 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉 and that 𝑇 : 𝑉 ↦→ 𝑊 is linear. Then, 𝑇 is completely determined by the vectors
𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛). Why? If 𝑣 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛, then

𝑇 (𝑣) = 𝑇 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑐1𝑇 (𝑣1) + · · · + 𝑐𝑛𝑇 (𝑣𝑛)

Theorem 4.1
Let 𝑉 and 𝑊 be two 𝑛-dimensional vector spaces. Suppose 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉 and 𝑤1, . . . , 𝑤𝑛 ∈ 𝑊 . There exists
a unique linear map 𝑇 : 𝑉 ↦→ 𝑊 such that 𝑇 (𝑣𝑖) = 𝑤𝑖 for each 𝑖 ≤ 𝑛.

Proof: Breaking the proof down into multiple parts to make it more digestible:

• Define 𝑇 : 𝑉 ↦→ 𝑊 by 𝑇 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑐1𝑤1 + · · · + 𝑐𝑛𝑤𝑛.

• We first need to check that this is well-defined, i.e.,

𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 = 𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛 =⇒ 𝑇 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑇 (𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛)
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Look at 𝑇 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑐1𝑤1 + · · · + 𝑐𝑛𝑤𝑛 and 𝑇 (𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛) = 𝑑1𝑤1 + · · · + 𝑑𝑛𝑤𝑛. Are they equal? Yes
— 𝑣1, . . . , 𝑣𝑛 being linearly independent and 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 = 𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛 implies that 𝑐 𝑗 = 𝑑 𝑗 for all 𝑗 ≤ 𝑛.
Thus,

𝑇 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑐1𝑤1 + · · · + 𝑐𝑛𝑤𝑛

= 𝑑1𝑤1 + · · · + 𝑑𝑛𝑤𝑛

= 𝑇 (𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛)

as desired.

• Since any 𝑣 can be expressed as 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 for some 𝑐1, . . . , 𝑐𝑛 ∈ F, the map 𝑇 is defined on all 𝑣 ∈ 𝑉 . By taking
𝑐 𝑗 = 1 and 𝑐𝑙 = 0 for 𝑙 ≠ 𝑗 , we get 𝑇 (𝑣 𝑗 ) = 𝑤 𝑗 .

• Next, we verify that 𝑇 is linear. This should be pretty straightforward. If 𝑢 = 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 and 𝑣 = 𝑏1𝑣1 + · · · + 𝑏𝑛𝑣𝑛,
then 𝑢 + 𝑣 = (𝑎1 + 𝑏1)𝑣1 + · · · + (𝑎𝑛 + 𝑏𝑏)𝑣𝑛. So,

𝑇 (𝑢 + 𝑤) = 𝑇 ((𝑎1 + 𝑏1)𝑣1 + · · · + (𝑎𝑛 + 𝑏𝑛)𝑣𝑛)
= (𝑎1 + 𝑏1)𝑇 (𝑣1) + · · · + (𝑎𝑛 + 𝑏𝑛)𝑇 (𝑣𝑛)
= (𝑎1 + 𝑏1)𝑤1 + · · · + (𝑎𝑛 + 𝑏𝑛)𝑤𝑛

= 𝑎1𝑤1 + · · · + 𝑎𝑛𝑤𝑛 + 𝑏1𝑤1 + · · · + 𝑏𝑛𝑤𝑛

= 𝑇 (𝑢) + 𝑇 (𝑤)

Proof for 𝑇 (_𝑣) = _𝑇 (𝑣) is very similar.

• Now, we prove uniqueness. Suppose 𝑆 is a linear map that takes each 𝑣 𝑗 to 𝑤 𝑗 for all 𝑗 ≤ 𝑛. Then,

𝑆(𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑐1𝑆(𝑣1) + · · · + 𝑐𝑛𝑆(𝑣𝑛)
= 𝑐1𝑤1 + · · · + 𝑐𝑛𝑤𝑛

for all 𝑐1, . . . , 𝑐𝑛 ∈ F. Then, 𝑆 = 𝑇 as desired.

Theorem 4.2
If 𝑇 : 𝑉 ↦→ 𝑊 is a linear map, then 𝑇 (0) = 0.

Proof: 𝑇 (0) = 𝑇 (0 + 0) = 𝑇 (0) + 𝑇 (0) =⇒ 𝑇 (0) + 𝑇 (0) − 𝑇 (0) = 𝑇 (0) − 𝑇 (0) =⇒ 𝑇 (0) = 0

Example 4.4
In the theorem above, we used the linear independence of 𝑣1, . . . , 𝑣𝑛 to argue that 𝑇 is well-defined. If 𝑇 is linearly
dependent, however, then 𝑇 won’t necessarily be well-defined. Consider 𝑉 = 𝑊 = R2 and

𝑣1 =

[
1
1

]
, 𝑣2 =

[
2
2

]
, 𝑤1 =

[
1
1

]
, 𝑤2 =

[
1
0

]
Let

𝑇 (𝑣1) = 𝑤1

𝑇 (𝑣2) = 𝑤2

Then,

𝑇 (2𝑣1) = 2𝑇 (𝑣1) = 2𝑤1 =

[
2
2

]
≠

[
1
0

]
= 𝑤2 = 𝑇 (𝑣2)

In other words, 2𝑣1 = 𝑣2 does not imply that 𝑇 (2𝑣1) = 𝑇 (𝑣2). Thus, 𝑇 does not represent a well-defined map.
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Definition 4.2: Vector Space of Linear Maps
Define L(𝑉,𝑊) = {𝑇 : 𝑉 ↦→ 𝑊 | 𝑇 is linear}. Then, L(𝑉,𝑊) is a vector space over F.

The vector space L(𝑉,𝑊) is valid over the following operations:

• Define an addition on L(𝑉,𝑊) as (𝑆 + 𝑇) (𝑣) = 𝑆(𝑣) + 𝑇 (𝑣) for all 𝑣 ∈ 𝑉 .

• Define a scalar multiplication on L(𝑉,𝑊) as (_𝑇) (𝑣) = _𝑇 (𝑣) for all 𝑣 ∈ 𝑉, _ ∈ F.

• Define the zero map 𝑇 (𝑣) = 0 for all 𝑣 ∈ 𝑉 as the additive identity.

The proof of L(𝑉,𝑊) being a valid vector space over the operations above is left as an exercise for the reader.

Note 4.2
dimL(𝑉,𝑊) = dim𝑉 dim𝑊

Let 𝑣1, . . . , 𝑣dim𝑉 and 𝑤1, . . . , 𝑤dim𝑊 be some basis of 𝑉 and 𝑊 respectively. Consider 𝑇𝑖 𝑗 such that 𝑇𝑖 𝑗 (𝑣𝑖) = 𝑤 𝑗 and
𝑇𝑖 𝑗 (𝑣𝑘) = 0 when 𝑘 ≠ 𝑖. It is left to the reader to show that 𝑇𝑖 𝑗 for 1 ≤ 𝑖 ≤ dim𝑉 and 1 ≤ 𝑗 ≤ dim𝑊 is a basis for L(𝑉,𝑊).

4.2 Null Space and Range

Definition 4.3: Kernal/Null Space
If 𝑇 : 𝑉 ↦→ 𝑊 is linear, then ker(𝑇) = null(𝑇) = {𝑣 ∈ 𝑉 | 𝑇 (𝑣) = 0}.

Note 4.3
ker(𝑇) is a subspace of 𝑉 .

Definition 4.4: Image/Range
If 𝑇 : 𝑉 ↦→ 𝑊 is linear, then im(𝑇) = range(𝑇) = {𝑇 (𝑣) | 𝑣 ∈ 𝑉}.

Note 4.4
range(𝑇) is a subspace of 𝑊 .

Example 4.5
Let 𝑇 : R2 ↦→ R2 be the reflection about the line 𝑦 = 𝑥. Then, 𝑇 (𝑒1) = 𝑒2 and 𝑇 (𝑒2) = 𝑒1. In other words,
𝑇 (𝑐1𝑒1 + 𝑐2𝑒2) = 𝑐2𝑒1 + 𝑐1𝑒2. Define

[𝑇]𝑒𝑒 =
[
0 1
1 0

]
to be the matrix, in the standard basis, that represents this transformation. Finally, range(𝑇) = R2 and ker(𝑇) = {0}

Example 4.6
Let proj𝑊 : R3 ↦→ R3 be the orthogonal projection onto a plane 𝑊 ⊆ R2. Then, range(proj𝑊 ) = 𝑊 ⊆ R3 and
ker(proj𝑊 ) is the line in R3 that is normal to 𝑊 .

Definition 4.5: Surjection
The map 𝑇 : 𝑉 ↦→ 𝑊 is onto or surjective if range(𝑇) = 𝑊 .
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Definition 4.6: Injection
The map 𝑇 : 𝑉 ↦→ 𝑊 is injective if it is one-to-one, i.e., 𝑇 (𝑣) = 𝑇 (𝑢) =⇒ 𝑣 = 𝑢 for all 𝑢, 𝑣 ∈ 𝑉 .

Theorem 4.3
𝑇 : 𝑉 ↦→ 𝑊 is injective iff 𝑇 (𝑣) = 0 =⇒ 𝑣 = 0, i.e., iff ker(𝑇) = {0}.

Proof: Biconditional proof:

• If 𝑇 is injective, then it is one to one and 𝑇 (𝑣) = 0 = 𝑇 (0) =⇒ 𝑣 = 0.

• Suppose 𝑇 (𝑣) = 𝑇 (𝑢). Then, 𝑇 (𝑣) − 𝑇 (𝑢) = 𝑇 (𝑣 − 𝑢) = 0 and ker(𝑇) = {0} implies 𝑣 − 𝑢 = 0 =⇒ 𝑣 = 𝑢 as desired.

Example 4.7
Let 𝑉 = 𝑊 = P5 (R). Then, define 𝐷 : P5 (R) ↦→ P5 (R) where 𝐷 𝑓 = 𝑓 ′ is the derivative of 𝑓 . Then, range(𝐷) =
P4 (R) ⊆ P5 (R) and ker(𝐷) is the set of constant functions ( 𝑓 (𝑥) = 𝑐). Note that 𝐷 is neither injective nor surjective.
However, if 𝐷 was instead defined as 𝐷 : P5 (R) ↦→ P4 (R), then it would be surjective.

Example 4.8
Let’s see what happens if we consider an infinite-dimensional vector space 𝑉 = 𝑊 = 𝐶∞ ( [𝑎, 𝑏]), i.e. the set of ∞-
differentiable functions on [𝑎, 𝑏]. Let 𝐷 : 𝐶∞ ( [𝑎, 𝑏]) ↦→ 𝐶∞ ( [𝑎, 𝑏]) where 𝐷 is again the differentiation map defined
above. Then, ker(𝐷) is the still the set of constant functions and range(𝐷) = 𝐶∞ ( [𝑎, 𝑏]) = 𝑊 . So, in this case, 𝐷 is
surjective, but it still isn’t injective.

Theorem 4.4: Rank-Nullity Theorem
Suppose 𝑇 : 𝑉 ↦→ 𝑊 is a linear map, with dim𝑉 < ∞. Then, 𝑉 = 𝑈 ⊕ 𝑍 where 𝑈 = ker(𝑇) and 𝑍 is a non-unique
subspace of 𝑉 such that 𝑇 (𝑍) = {𝑇 (𝑧) | 𝑧 ∈ 𝑍} = range(𝑇) and 𝑇 is injective when restricted to 𝑍 . As an immediate
consequence, dim𝑉 = dimker(𝑇) + dim range(𝑇).

Proof: Since dim𝑉 < ∞ and ker(𝑇) is a subspace of 𝑉 , there is a basis 𝑢1, . . . , 𝑢𝑚 for 𝑈 = ker(𝑇) that extends to a basis
𝑢1, . . . , 𝑢𝑚, 𝑣1, . . . , 𝑣𝑛 of 𝑉 (so dim𝑉 = 𝑚 + 𝑛). Let 𝑍 = span(𝑣1, . . . , 𝑣𝑛). We claim that 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) is a basis of
range(𝑇). First suppose 𝑥 = 𝑐1𝑢1 + · · · + 𝑐𝑚𝑢𝑚 + 𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛 for 𝑐1, . . . , 𝑐𝑚, 𝑑1, . . . , 𝑑𝑛 ∈ F. Thus, 𝑉 = 𝑈 + 𝑍 is a direct
sum since every 𝑥 ∈ 𝑉 can be written like that. Then,

𝑇 (𝑥) = 𝑇 (𝑐1𝑢1 + · · · + 𝑐𝑚𝑢𝑚 + 𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛)
= 𝑇 (𝑐1𝑢1 + · · · + 𝑐𝑚𝑢𝑚)︸                      ︷︷                      ︸

0

+𝑇 (𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛)

= 𝑑1𝑇 (𝑣1) + · · · + 𝑑𝑛𝑇 (𝑣𝑛)

Therefore, range(𝑇) = span(𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛)) = 𝑇 (𝑍) as desired.
We will now show that 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) are linearly independent. Suppose 𝑎1𝑇 (𝑣1) + · · · + 𝑎𝑛𝑇 (𝑣𝑛) = 0 for some scalars
𝑎1, . . . , 𝑎𝑛 ∈ F. Then, 𝑇 (𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛) = 0 and 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ∈ ker(𝑇). So, 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 𝑏1𝑢1 + · · · + 𝑏𝑚𝑢𝑚
for some scalars 𝑏1, . . . , 𝑏𝑚 ∈ 𝐹 since 𝑢1, . . . , 𝑢𝑚 is a basis of 𝑈 = ker(𝑇). Thus, 𝑏1𝑢1 + · · · + 𝑏𝑚𝑢𝑚 − 𝑎1𝑣1 − · · · − 𝑎𝑛𝑣𝑛 = 0.
However, 𝑢1, . . . , 𝑢𝑚, 𝑣1, . . . , 𝑣𝑛 are linearly independent (since they form a basis) so 𝑏1 = . . . 𝑏𝑚 = 𝑎1 = · · · = 𝑎𝑛 = 0. This
calculation proves that

• 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) are linearly independent and so they form a basis of range(𝑇)

• ker(𝑇) ∩ 𝑍 = {0}, i.e., 𝑉 = 𝑈 ⊕ 𝑍

• 𝑇 |𝑍 (the restriction of 𝑇 to domain 𝑍) is injective since ker(𝑇 |𝑍 ) = ker(𝑇) ∩ 𝑍 = {0}
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Note 4.5
If 𝑉 = 𝑊 , we are not claiming that 𝑉 = ker(𝑇) ⊕ range(𝑇), though that can happen. For instance, when 𝑇 : 𝑉 ↦→ 𝑉 is
injective and 𝑉 = range(𝑇).

Example 4.9

Here is one counterexample to the note above — let 𝑉 = 𝑊 = R2 and 𝑇

[
𝑥

𝑦

]
=

[
𝑦

0

]
. Then,

ker(𝑇) =
{[
𝑥

0

]
| 𝑥 ∈ R

}
range(𝑇) =

{[
𝑥

0

]
| 𝑥 ∈ R

}
Observe that ker(𝑇) = range(𝑇) and 𝑉 = R2 ≠ ker(𝑇) ⊕ range(𝑇).

Example 4.10
Define the left shift transformation 𝑇 : R3 ↦→ R3, i.e., 𝑇 (𝑒1) = 0, 𝑇 (𝑒2) = 𝑒1 and 𝑇 (𝑒3) = 𝑒2. Then,

𝑇


𝑥

𝑦

𝑧

 =


0 1 0
0 0 1
0 0 0



𝑥

𝑦

𝑧


Note that ker(𝑇) = span(𝑒1) and range(𝑇) = span(𝑒2, 𝑒2). Then, dim𝑉 = 3 = 1 + 2 = dimker(𝑇) + dim range(𝑇) as
expected.

Theorem 4.5
Let 𝑇 ∈ L(𝑉,𝑊) and 𝑣1, . . . , 𝑣𝑛 be a basis of 𝑉 . Then, 𝑇 is injective iff 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) are linearly independent.

Proof: We will prove both directions:

• Suppose that

𝑐1𝑇 (𝑣1) + · · · + 𝑐𝑛𝑇 (𝑣𝑛) = 0

𝑇 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 0

for some scalars 𝑐1, . . . , 𝑐𝑛 ∈ F. The injectivity of 𝑇 implies ker(𝑇) = {0}, i.e., 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 = 0. However,
𝑐1 = · · · = 𝑐𝑛 = 0 since 𝑣1, . . . , 𝑣𝑛 is a basis, which implies that 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) are linearly independent as well.

• We will show prove the contrapositive: if 𝑇 is not injective, then 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) are linearly dependent. Since
ker(𝑇) ≠ 0, there is some non-zero 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 ∈ 𝑉 such that

𝑇 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 0

𝑐1𝑇 (𝑣1) + · · · + 𝑐𝑛𝑇 (𝑣𝑛) = 0

By the linear independence of 𝑣1, . . . , 𝑣𝑛, there has to be at least one non-zero 𝑐𝑖 such that 𝑐1𝑣1+· · ·+𝑐𝑛𝑣𝑛 ≠ 0. However,
this also implies that 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) are linearly dependent.
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5 Lecture 5

5.1 Matrices

Definition 5.1: Matrix
Define

𝐴 =


𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎𝑚1 . . . 𝑎𝑚𝑛


to be an 𝑚 × 𝑛 matrix where 𝑎𝑖 𝑗 is the element in row 𝑖 and column 𝑗 .

Note 5.1

The vector 𝑥 =


𝑥1
𝑥2
...

𝑥𝑛


∈ R𝑛 can be regarded as both a column vector and an 𝑛 × 1 matrix.

Definition 5.2: Matrix-Vector Product
The product of an 𝑚 × 𝑛 matrix 𝐴 and a vector 𝑥 ∈ R𝑛 is defined as

𝐴𝑥 =


𝑎11 . . . 𝑎1𝑛
...

. . .
...

𝑎𝑚1 . . . 𝑎𝑚𝑛



𝑥1
...

𝑥𝑛

 =


𝑎11𝑥1 + · · · + 𝑎1𝑛𝑥𝑛

...

𝑎𝑚1𝑥1 + · · · + 𝑎𝑚𝑛𝑥𝑛

 ∈ R𝑚

The 𝑖th row of 𝐴𝑥 can be viewed as the dot product of the 𝑖th row of 𝐴 with 𝑥.

Note 5.2
We will assume that you already know how matrix addition, scalar multiplication and vector dot-products work from
previous linear algebra courses.

Theorem 5.1

𝐴𝑥 = 𝑥1𝑎1 + · · · + 𝑥𝑛𝑎𝑛 where 𝑎 𝑗 =


𝑎1 𝑗
...

𝑎𝑚𝑗

 is the 𝑗 th column of 𝐴.

Proof: Observe that

𝐴𝑥 =


𝑎11𝑥1 + · · · + 𝑎1𝑛𝑥𝑛

...

𝑎𝑚1𝑥1 + · · · + 𝑎𝑚𝑛𝑥𝑛


=


𝑎11𝑥1

...

𝑎𝑚1𝑥1

 + · · · +

𝑎1𝑛𝑥𝑛

...

𝑥𝑚𝑛𝑥𝑛


= 𝑥1


𝑎11
...

𝑎𝑚1

 + · · · + 𝑥𝑛


𝑎1𝑛
...

𝑎𝑚𝑛


= 𝑥1𝑎1 + · · · + 𝑥𝑛𝑎𝑛
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Given a system of linear equations

𝑎11𝑥1 + · · · + 𝑎1𝑛𝑥𝑛 = 𝑏1

...

𝑎𝑚1𝑥1 + · · · + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

with 𝑚 equations and 𝑛 unknowns, we can rewrite it as
𝑎11𝑥1 + · · · + 𝑎1𝑛𝑥𝑛

...

𝑎𝑚1𝑥1 + · · · + 𝑎𝑚𝑛𝑥𝑛

 =


𝑏1
...

𝑏𝑚


𝐴𝑥 = 𝑏

The augmented matrix (𝐴 | 𝑏) for the system corresponds to the 𝐴𝑥 = 𝑏 expression given above. This is among the many good
reasons for defining matrix-vector product the way we did above!
Few observations about the matrix-vector product:

1. 𝐴𝑒 𝑗 = 𝑎 𝑗 where 𝑒 𝑗 is a part of the standard basis of R𝑛.

2. An easy calculation shows that 𝐴𝑥 is linear:

𝐴(𝑥 + 𝑥′) = 𝐴𝑥 + 𝐴𝑥′ ∀𝑥, 𝑥′ ∈ R𝑛

𝐴(𝑐𝑥) = 𝑐𝐴𝑥 ∀𝑥 ∈ R𝑛, 𝑐 ∈ R

Note 5.3
F𝑚×𝑛 denotes the vector space of 𝑚 × 𝑛 matrices whose elements are in F. Furthermore, dimF𝑚×𝑛 = 𝑚𝑛.

Theorem 5.2: Matrix-Matrix Product
If 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑝 , we want to extend our definition of matrix multiplication so that

1. 𝐴𝐵 is defined and 𝐴𝐵 ∈ R𝑚×𝑝

2. If 𝑝 = 1, this just reduces to matrix vector multiplication

3. (𝐴𝐵)𝑥 = 𝐴(𝐵𝑥) for all 𝑥 ∈ R𝑝

We claim that 𝐴𝐵 is uniquely determined by the requirements above.

Proof: According to the associativity condition above,

(𝐴𝐵)𝑥 = 𝐴(𝐵𝑥)
= 𝐴(𝑥1𝑏1 + · · · + 𝑥𝑝𝑏𝑝)
= 𝑥1𝐴𝑏1 + · · · + 𝑥𝑝𝐴𝑏𝑝

where 𝑏1, . . . , 𝑏𝑝 are the columns of matrix 𝐵. Letting 𝑥 𝑗 = 𝑒 𝑗 will yield (𝐴𝐵)𝑒 𝑗 = 𝐴𝑏 𝑗 . In other words, the 𝑗 th column of 𝐴𝐵
is the product of matrix 𝐴 and the 𝑗 th column of 𝐵. Thus, 𝐴𝐵 is uniquely determined (since regular matrix vector multiplication
is also uniquely determined).

Example 5.1
If 𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝, then the 𝑖, 𝑗 th entry of 𝐴𝐵 is (𝐴𝐵)𝑖 𝑗 =

∑𝑛
𝑘=1 𝑎𝑖𝑘𝑏𝑘 𝑗 . Why? (𝐴𝐵)𝑖 𝑗 is the 𝑖th entry of
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𝐴𝑏 𝑗 = 𝑏1 𝑗𝑎1 + · · · + 𝑏𝑛 𝑗𝑎𝑛, which is

𝑏1 𝑗𝑎𝑖1 + · · · + 𝑏𝑛 𝑗𝑎𝑖𝑛 = 𝑎𝑖1𝑏1 𝑗 + · · · + 𝑎𝑖𝑛𝑏𝑛 𝑗

=

𝑛∑︁
𝑘=1

𝑎𝑖𝑘𝑏𝑘 𝑗

Theorem 5.3: Associativity of Matrix Multiplication
(𝐴𝐵)𝐶 = 𝐴(𝐵𝐶) where 𝐴 is 𝑚 × 𝑛, 𝐵 is 𝑛 × 𝑝 and 𝐶 is 𝑝 × 𝑞.

Proof: The 𝑗 th column of (𝐴𝐵)𝐶 is (𝐴𝐵)𝑐 𝑗 = 𝐴(𝐵𝑐 𝑗 ). However, 𝐵𝑐 𝑗 is the 𝑗 th column of 𝐵𝐶 so 𝐴(𝐵𝑐 𝑗 ) = 𝐴(𝐵𝐶) 𝑗 , which
is the 𝑗 th column of 𝐴(𝐵𝐶). Since this is true for all columns 𝑗 ≤ 𝑞, we get that (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).

Example 5.2
Suppose 𝐴 is an 𝑚 × 𝑛 matrix. Then, 𝑇 (𝑥) = 𝐴𝑥 is a linear map from R𝑛 to R𝑚. This is the same statement as “𝐴 is
linear” that was made earlier.

However, there is a converse to this fact.

Theorem 5.4
𝑇 : R𝑛 ↦→ R𝑚 is a linear map iff there is an 𝑚 × 𝑛 matrix 𝐴 such that 𝑇 (𝑥) = 𝐴𝑥 for all 𝑥 ∈ R𝑛.

Proof: The first part of this biconditional is trivial and already explained. We will now show the converse:

𝑇 (𝑥) = 𝑇 (𝑥1𝑒1 + · · · + 𝑥𝑛𝑒𝑛)
= 𝑥1𝑇 (𝑒1) + · · · + 𝑥𝑛𝑇 (𝑒𝑛)

=
[
𝑇 (𝑒1) . . . 𝑇 (𝑒𝑛)

]︸                      ︷︷                      ︸
𝑚×𝑛 matrix


𝑥1
...

𝑥𝑛


Taking 𝐴 =

[
𝑇 (𝑒1) . . . 𝑇 (𝑒𝑛)

]
will give us 𝑇 (𝑥) = 𝐴𝑥. This matrix 𝐴 is called the matrix representation of 𝑇 : R𝑛 ↦→ R𝑚

with respect to the standard basis of both R𝑛 and R𝑚, and is sometimes denoted by either [𝑇]𝑒 or [𝑇]𝑒𝑒.

Example 5.3
Let 𝑇 : R2 ↦→ R2 be the reflection across the line 𝑦 = −𝑥. Then,

𝑇 (𝑒1) = −𝑒2

=

[
0

−1

]
𝑇 (𝑒2) = −𝑒1

=

[
−1
0

]
Thus, [𝑇]𝑒 =

[
𝑇 (𝑒1) 𝑇 (𝑒2)

]
=

[
0 −1

−1 0

]
.

Example 5.4
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Let 𝑇 : R3 ↦→ R2 be defined such that 𝑇 (𝑥, 𝑦, 𝑧) = (𝑦 − 𝑥 + 𝑧, 2𝑥 + 3𝑦). Then,

𝑇 (𝑒1) = 𝑇 (1, 0, 0) = (−1, 2)
𝑇 (𝑒2) = 𝑇 (0, 1, 0) = (1, 3)
𝑇 (𝑒3) = 𝑇 (0, 0, 1) = (1, 0)

Thus, [𝑇]𝑒 =
[
𝑇 (𝑒1) 𝑇 (𝑒2) 𝑇 (𝑒3)

]
=

[
−1 1 1
2 3 0

]
.

Definition 5.3: Composition
Suppose 𝑇 ∈ L(R𝑛,R𝑚) with [𝑇]𝑒 = 𝐴 and 𝑆 ∈ L(R𝑝 ,R𝑛) with [𝑆]𝑒 = 𝐵. Then, the composition 𝑇 ◦ 𝑆 is defined as
(𝑇 ◦ 𝑆) (𝑥) = 𝑇 (𝑆𝑥) for all 𝑥 ∈ R𝑝 and is well defined.

Theorem 5.5
[𝑇 ◦ 𝑆]𝑒 = [𝑇]𝑒 [𝑆]𝑒 = 𝐴𝐵

Proof: Note that [𝑇 ◦ 𝑆]𝑒 = 𝐴𝐵 implies that (𝑇 ◦ 𝑆)𝑒 𝑗 is the 𝑗 th column of 𝐴𝐵 for all 𝑗 ≤ 𝑝. However, the 𝑗 th column of 𝐴𝐵
is 𝐴𝑏 𝑗 = 𝐴(𝑆𝑒 𝑗 ) = 𝑇 (𝑆𝑒 𝑗 ) = (𝑇 ◦ 𝑆)𝑒 𝑗 by the definition of compositions. Thus, [𝑇 ◦ 𝑆]𝑒 = 𝐴𝐵 is indeed a true statement.

Note 5.4
The proof above also shows that (𝑇 ◦ 𝑆) (𝑥) = 𝑇 (𝑆𝑥) for all 𝑥 ∈ R𝑝 is equivalent to the requirement that (𝐴𝐵)𝑥 = 𝐴(𝐵𝑥),
which we already established earlier.

5.2 Change of Basis

Definition 5.4: Coordinate Vectors
Suppose that 𝑉 has a basis 𝛼 = 𝑣1, . . . , 𝑣𝑛. If 𝑥 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛, then define

[𝑥]𝛼 =


𝑐1
...

𝑐𝑛

 ∈ R𝑛

to be the coordinate vector of 𝑥 with respect to the basis 𝛼. Denote the map 𝑥 ↦→ [𝑥]𝛼 (or equivalently, 𝑉 ↦→ R𝑛) by �̃�,
i.e., define �̃�(𝑥) = [𝑥]𝛼 for all 𝑥 ∈ 𝑉 . In other words, �̃� is the map that returns the 𝛼-coordinates of some 𝑥 ∈ 𝑉 .

Note 5.5
Easy calculations show that �̃� is an injective and surjective map from 𝑉 ↦→ R𝑛.

Definition 5.5: Matrix Representation of 𝑇
Suppose 𝑇 ∈ L(𝑉,𝑊) and 𝛼 = 𝑣1, . . . , 𝑣𝑛, 𝛽 = 𝑤1, . . . , 𝑤𝑚 are a basis of 𝑉 and 𝑊 respectively. Then,

[𝑇]𝛽𝛼 =
[
[𝑇 (𝑣1)]𝛽 . . . [𝑇 (𝑣𝑛)]𝛽

]
is the matrix representation of 𝑇 with respect to the particular bases 𝛼 and 𝛽. This is also sometimes denoted by
M(𝑇, (𝑣1, . . . , 𝑣𝑛), (𝑤1, . . . , 𝑤𝑚)) or just M(𝑇) if the choice of bases is clear from the context.

Let dim𝑉 = 𝑛, dim𝑊 = 𝑚 and 𝑇 : 𝑉 ↦→ 𝑊 . Then, [𝑇]𝛽𝛼 is an 𝑚 × 𝑛 matrix whose 𝑗 th column is [𝑇 (𝑣 𝑗 )]𝛽 . This can also be
represented using the following commutative diagram:
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𝑉 𝑊

R𝑛 R𝑚

𝑇

𝛼 𝛽

[𝑇 ]𝛽𝛼

In other words, 𝛽(𝑇 (𝑣)) = [𝑇]𝛽𝛼�̃�(𝑣) for all 𝑣 ∈ 𝑉 . Since �̃� is invertible, it follows that [𝑇]𝛽𝛼 = 𝛽 ◦ 𝑇 ◦ (�̃�)−1 is a linear map
from R𝑛 ↦→ R𝑚.

Example 5.5
Let dim𝑉 = 𝑛 and 𝛼, 𝛽 be two different bases for 𝑉 . Define 𝐼 (𝑣) = 𝑣 to be the identity map from 𝑉 to 𝑉 . Consider the
following diagram:

𝑉 𝑉

R𝑛 R𝑛

𝐼

𝛼 𝛽

[𝐼 ]𝛽𝛼

Then, [
[𝑣1]𝛽 . . . [𝑣𝑛]𝛽

]
= [𝐼]𝛽𝛼 = 𝛽 ◦ 𝐼 ◦ (�̃�)−1 = 𝛽 ◦ (�̃�)−1

where 𝛼 = 𝑣1, . . . , 𝑣𝑛. Note that (�̃�)−1 yields a vector back from its 𝛼-coordinates, after which 𝛽 retrieves its
𝛽-coordinates. In other words, [𝐼]𝛽𝛼 : R𝑛 ↦→ R𝑛 is the change of basis matrix from basis 𝛼 to basis 𝛽.

As a consequence of the results above, we get some natural tautologies that follow directly:

• [𝑇]𝛽𝛼 [𝑣]𝛼 = [𝑇 (𝑣)]𝛽

Proof: Start with the expansion of [𝑇]𝛽𝛼 as

[𝑇]𝛽𝛼 [𝑣]𝛼 = (𝛽 ◦ 𝑇 ◦ �̃�−1) [𝑣]𝛼
= (𝛽 ◦ 𝑇) (�̃�−1 [𝑣]𝛼)
= (𝛽 ◦ 𝑇) (𝑣)
= 𝛽(𝑇 (𝑣))
= [𝑇 (𝑣)]𝛽

• [𝑇]𝛽𝛼 [𝑆]𝛼𝛾 = [𝑇 ◦ 𝑆]𝛽𝛾

Proof: We follow the same strategy as above:

[𝑇]𝛽𝛼 [𝑆]𝛼𝛾 [𝑣]𝛾 = [𝑇]𝛽𝛼 [𝑆(𝑣)]𝛼
= [𝑇 (𝑆(𝑣))]𝛽
= [𝑇 ◦ 𝑆]𝛽𝛾 [𝑣]𝛾

Example 5.6
Since [𝑇]𝛽𝛼 [𝑣]𝛼 = [𝑇 (𝑣)]𝛽 , the change of basis matrix [𝐼]𝛽𝛼 implies [𝐼]𝛽𝛼 [𝑣]𝛼 = [𝑣]𝛽 as expected.

Note 5.6
The calculation [𝐼]𝛼𝛼 = [𝐼 ◦ 𝐼]𝛼𝛼 = [𝐼]𝛼𝛽 [𝐼]

𝛽
𝛼 shows that [𝐼]𝛼𝛽 = ( [𝐼]𝛽𝛼)−1.
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Example 5.7
Let 𝑇 : R2 ↦→ R2 be the reflection about the line 𝑦 = 3𝑥. What is [𝑇]𝑒𝑒? First, choose an appropriate basis to model this
problem in: let

𝛼 = 𝑣1 =

[
1
3

]
, 𝑣2 =

[
3

−1

]
Since 𝑇 (𝑣1) = 𝑇

[
1
3

]
=

[
1
3

]
= 1𝑣1 + 0𝑣2 and 𝑇 (𝑣2) = 𝑇

[
3

−1

]
=

[
−3
1

]
= 0𝑣1 − 1𝑣2,

[𝑇]𝛼𝛼 =

[
1 0
0 −1

]
Then,

[𝑇]𝑒𝑒 = [𝐼 ◦ 𝑇 ◦ 𝐼]𝑒𝑒
= [𝐼]𝑒𝛼 [𝑇]𝛼𝛼 [𝐼]𝛼𝑒
= [𝐼]𝑒𝛼 [𝑇]𝛼𝛼 ( [𝐼]𝑒𝛼)−1

Thus,

[𝑇]𝑒𝑒 =
[
𝑣1 𝑣2

] [1 0
0 −1

] [
𝑣1 𝑣2

]−1
=

[
1 3
3 −1

] [
1 0
0 −1

] [
1 3
3 −1

]−1
=

[
1 3
3 −1

] [
1 0
0 −1

] (
− 1

10

[
−1 −3
−3 1

] )
=

[
−4/5 3/5
3/5 4/5

]
We have been using the notion of an inverse so far that you should already be familiar with from other linear algebra courses.
We will give the math 110 definition of it next lecture.
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6 Lecture 6

6.1 Matrix Representation of Linear Transformations Recap

If 𝑇 : 𝑉 ↦→ 𝑊 is linear, 𝛼 = 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉 , 𝛽 = 𝑤1, . . . , 𝑤𝑚 is a basis of 𝑊 and 𝑇 (𝑣 𝑗 ) = 𝑎1 𝑗𝑤1 + · · · + 𝑎𝑚𝑗𝑤𝑚 for
1 ≤ 𝑗 ≤ 𝑛, then

𝐴 =


𝑎11 𝑎12 . . . 𝑎1𝑛
𝑎21 𝑎22 . . . 𝑎2𝑛
...

...
. . .

...

𝑎𝑚1 𝑎𝑚2 . . . 𝑎𝑚𝑛


= [𝑇]𝛽𝛼

is the matrix representation of 𝑇 with respect to both 𝛼 and 𝛽.
In other words, the columns of 𝐴 are [𝑇 (𝑣1)]𝛽 , [𝑇 (𝑣2)]𝛽 , . . . , [𝑇 (𝑣𝑛)]𝛽 , the 𝛽-coordinates of each 𝑇 (𝑣 𝑗 ). We also observed
that the change of basis matrix from 𝛼-coordinates to 𝛽-coordinates is simply just [𝐼]𝛽𝛼, where 𝐼 : 𝑉 ↦→ 𝑉 is the identity map.

Example 6.1
Let 𝐷 ∈ L(P3 (R),P2 (R)) be defined by 𝐷𝑝 = 𝑝′. The bases of P3 (R) and P2 (R) are the polynomial standard bases
1, 𝑥, 𝑥2, 𝑥3 and 1, 𝑥, 𝑥2 respectively. Then,

[𝐷]𝑒𝑒 =

0 1 0 0
0 0 2 0
0 0 0 3


since

𝐷 (1) = 0 = 0 · 1 + 0 · 𝑥 + 0 · 𝑥2

𝐷 (𝑥) = 1 = 1 · 1 + 0 · 𝑥 + 0 · 𝑥2

𝐷 (𝑥2) = 2𝑥 = 0 · 1 + 2 · 𝑥 + 0 · 𝑥2

𝐷 (𝑥3) = 3𝑥2= 0 · 1 + 0 · 𝑥 + 3 · 𝑥2

Example 6.2
Let 𝐷 ∈ L(P3 (R),P2 (R)) and 𝐷𝑝 = 𝑝′. Find a basis 𝛼 of P3 (R) and a basis 𝛽 of P2 (R) such that

[𝐷]𝛽𝛼 =


1 0 0 0
0 1 0 0
0 0 1 0


We seek 𝛼 = 𝑝1, 𝑝2, 𝑝3, 𝑝4 and 𝛽 = 𝑞1, 𝑞2, 𝑞3 such that

𝑝′1 = 𝑞1

𝑝′2 = 𝑞2

𝑝′3 = 𝑞3

𝑝′4 = 0

The last equation implies that 𝑝4 ≠ 0 is the constant polynomial. Now, we can choose 𝑝1, 𝑝2, 𝑝3 to be any polynomials
we want in P3 (R) so long as 𝑝1, 𝑝2, 𝑝3, 𝑝4 are linearly independent. For example, say

𝑝1 = 𝑥3 =⇒ 𝑞1 = 3𝑥2

𝑝2 = 𝑥2 =⇒ 𝑞2 = 2𝑥

𝑝3 = 𝑥 =⇒ 𝑞3 = 𝑥
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Are 𝑞1, 𝑞2, 𝑞3 a basis of P (R)? Lets check: 𝑎(3𝑥2) + 𝑏(2𝑥) + 𝑐(𝑥) = 0 for all 𝑥 ∈ R implies that 3𝑎 = 2𝑏 = 𝑐 = 0 =⇒
𝑎 = 𝑏 = 𝑐 = 0. Thus, 𝑞1, 𝑞2, 𝑞3 are also linearly independent and they form a basis of the 3-dimensional space P2 (R).
Note that this solution is not unique.

Example 6.3: 3C Exercise 3
Let dim𝑉 = 𝑛, dim𝑊 = 𝑚 and 𝑇 ∈ L(𝑉,𝑊). Prove that there is a basis 𝛼 of 𝑉 and 𝛽 of 𝑊 such that M(𝑇) = [𝑇]𝛽𝛼 has
0 for all entries other than the ( 𝑗 , 𝑗) entries along the diagonal, which are all 1 for 𝑗 ≤ dim range(𝑇). In other words,
letting 𝑟 = dim range(𝑇), the matrix M(𝑇) should look like

[𝑇]𝛽𝛼 =


1

. . .

1

0𝑟×(𝑛−𝑟 )

0(𝑚−𝑟 )×𝑟 0(𝑚−𝑟 )×(𝑛−𝑟 )


Proof: Recall the statement and context of the abstract version of the rank-nullity theorem. Choose a basis 𝑢1, . . . , 𝑢𝑘
of ker(𝑇) and extend it to a basis 𝑢1, . . . , 𝑢𝑘 , 𝑣1, . . . , 𝑣𝑛−𝑘 of 𝑉 . Let 𝑍 = span(𝑣1, . . . , 𝑣𝑛−𝑘). Then, 𝑉 = 𝑍 ⊕ ker(𝑇)
and 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛−𝑘) is a basis for range(𝑇) as in the proof of the rank-nullity theorem from earlier. Extend this to a
basis 𝛽 = 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛−𝑘), 𝑤𝑛−𝑘+1, . . . , 𝑤𝑚 of 𝑊 such that 𝑊 = range(𝑇) ⊕ span(𝑤𝑛−𝑘+1, . . . , 𝑤𝑚). Taking these,
M(𝑇) should have the desired form, with 𝑛 − 𝑘 1s along the diagonal starting from the top-left, and 0s everywhere else.

Example 6.4: 3C Exercise 4
Let 𝛼 = 𝑣1, . . . , 𝑣𝑛 be a basis of 𝑉 and dim𝑊 = 𝑚. If 𝑇 ∈ L(𝑉,𝑊), prove that there is a basis 𝛽 = 𝑤1, . . . , 𝑤𝑚 of 𝑊
such that all entries of the first column of M(𝑇) are 0 except for possibly a 1 in the (1, 1) position. In other words, the
matrix M(𝑇) should look like

[𝑇]𝛽𝛼 =


0 or 1
0 other
... junk
0


.

Proof: There are two cases:

• Suppose 𝑇 (𝑣1) = 0. Then, choose any basis for 𝑊 and M(𝑇) will have the desired form (with 𝑎11 = 0).

• Suppose 𝑇 (𝑣1) ≠ 0. Then choose 𝑤1 = 𝑇 (𝑣1) and extend it to a basis 𝑤1, . . . , 𝑤𝑚 of 𝑊 . Again, M(𝑇) will have
the desired form (with 𝑎11 = 1).

Example 6.5: 3C Exercise 5
Let 𝛽 = 𝑤1, . . . , 𝑤𝑚 be a basis of 𝑊 , with dim𝑉 = 𝑛 and 𝑇 ∈ L(𝑉,𝑊). Prove that there is a basis 𝛼 = 𝑣1, . . . , 𝑣𝑛 of
𝑉 such that all entries in the first row of M(𝑇) are 0 except for possibly a 1 in the (1, 1) position. In other words, the
matrix M(𝑇) should look like

[𝑇]𝛽𝛼 =


0 or 1 0 . . . 0
𝑐21 𝑐22 . . . 𝑐2𝑛
...

...
...

...
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Proof: Choose any basis 𝛾 = 𝑢1, . . . , 𝑢𝑛 of 𝑉 . Suppose

[𝑇]𝛽𝛾 =


𝑐11 𝑐12 . . . 𝑐1𝑛
𝑐21 . . . . . . . . .
...

...
...

...


There are again two cases:

1. If 𝑐11 = 𝑐12 = · · · = 𝑐1𝑛 = 0, we can choose 𝛼 = 𝛾 and we are done, with the matrix M(𝑇) having 𝑐11 = 0.

2. Otherwise, choose some 𝑐1 𝑗 that is not 0 and let

𝑣1 =
𝑢 𝑗

𝑐1 𝑗

𝑣𝑖 = 𝑢𝑖−1 − 𝑐1,𝑖−1𝑣1 2 ≤ 𝑖 ≤ 𝑗

𝑣𝑖 = 𝑢𝑖 − 𝑐1,𝑖𝑣1 𝑗 + 1 ≤ 𝑖 ≤ 𝑛

Taking 𝛼 = 𝑣1, . . . , 𝑣𝑛 results in M(𝑇) of the desired form with 𝑐11 = 1.

6.2 Isomorphisms

Definition 6.1: Invertible
𝑇 ∈ L(𝑉,𝑊) is called invertible if there exists an 𝑆 ∈ L(𝑊,𝑉) such that 𝑆𝑇 = 𝐼𝑉 and 𝑇𝑆 = 𝐼𝑊 .

Note 6.1
If 𝑆 exists, then it is unique and we denote it by 𝑇−1 (this is reminiscent of the inverse notation for scalars).

Theorem 6.1
𝑇 ∈ L(𝑉,𝑊) is invertible iff 𝑇 is injective and surjective.

Definition 6.2: Isomorphism
An isomorphism is an invertible linear map between vector spaces. Two vector spaces are isomorphic if there is an
isomorphism from one to the other.

Note 6.2
If 𝑉 and 𝑊 are isomorphic, we denote that by 𝑉 � 𝑊 .

Theorem 6.2
Two finite-dimensional vector spaces over F are isomorphic iff they have the same dimension.

Proof: We will prove both directions:

• Suppose dim𝑉 = dim𝑊 = 𝑛. Choose a basis 𝑣1, . . . , 𝑣𝑛 of 𝑉 and 𝑤1, . . . , 𝑤𝑛 of 𝑊 . By theorem 4.1 of this note
(not Axler), we can let 𝑇

(∑𝑛
𝑘=1 𝑐𝑘𝑣𝑘

)
=

∑𝑛
𝑘=1 𝑐𝑘𝑤𝑘 define a unique linear map from 𝑉 to 𝑊 . It is surjective because

span(𝑤1, . . . , 𝑤𝑛) = 𝑊 and injective by the linear independence of 𝑤1, . . . , 𝑤𝑛. Thus, 𝑇 is an isomorphism so 𝑉 � 𝑊 .

• We will now show that if finite-dimensional 𝑉 and 𝑊 are isomorphic, then dim𝑉 = dim𝑊 . If 𝑣1, . . . , 𝑣𝑛 is a basis of
𝑉 and 𝑇 : 𝑉 ↦→ 𝑊 is surjective, then span(𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛)) = 𝑊 . Thus, dim𝑊 ≤ dim𝑉 = 𝑛. Since 𝑇 is injective,
the vectors 𝑇 (𝑣1), . . . , 𝑇 (𝑣𝑛) are linearly independent and 𝑛 = dim𝑉 ≤ dim𝑊 . Combining the two inequalities yields
dim𝑉 = dim𝑊 = 𝑛.
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Example 6.6
Choosing bases 𝛼 = 𝑣1, . . . , 𝑣𝑛 of 𝑉 and 𝛽 = 𝑤1, . . . , 𝑤𝑚 of 𝑊 sets up isomorphisms between 𝑉 � R𝑛 and 𝑊 � R𝑚 via
the maps �̃� and 𝛽 respectively. Furthermore, these also “induce” an isomorphism from L(𝑉,𝑊) to M𝑚,𝑛 (R) = R𝑚×𝑛

(the set of all 𝑚 × 𝑛 matrices). To visualize these, look at the following commutative diagrams:

𝑉 𝑊

R𝑛 R𝑚

𝑇

�𝛼 𝛽�

[𝑇 ]𝛽𝛼

L(𝑉,𝑊)

M𝑚,𝑛 (R) M𝑚,𝑛 (R)

�

𝑇 ↦→[𝑇 ]𝛽𝛼 𝑇 ↦→[𝑇 ] 𝛿𝛾
�

�

𝐴↦→[𝐼 ] 𝛿𝛽 𝐴[𝐼 ]
𝛼
𝛾

𝑉

R𝑛 R𝑛

�

𝛾 𝛼

�

�

[𝐼 ]𝛼𝛾 =𝛼◦(𝛾)−1

𝑊

R𝑚 R𝑚

�

𝛽 𝛿

�

�

[𝐼 ] 𝛿𝛽=𝛿◦(𝛽)−1

The first commutative diagram shows that L(𝑉,𝑊) �M𝑚,𝑛 (R) via the linear map 𝑇 ↦→ [𝑇]𝛽𝛼 given by 𝛽 ◦ 𝑇 ◦ (�̃�)−1.
The second diagram condenses this and shows the same isomorphism with a different bases 𝛾 of 𝑉 and 𝛿 of 𝑊 .
However, [𝑇] 𝛿𝛾 � [𝑇]𝛽𝛼 (the matrix representations with respect to both sets of bases) are themselves isomorphic, and
this isomorphism is induced by the change of basis maps that are presented in the third and fourth diagrams.

Note 6.3
In the case that 𝑉 = 𝑊 and 𝛼 = 𝛽, we get that L(𝑉,𝑊) ↦→ M𝑛,𝑛 (F) (or equivalently 𝑇 ↦→ [𝑇]𝛼𝛼) is actually a ring
(called an F-algebra) isomorphism!

6.3 Discussion Problems

Problem 6.1
Show that if 𝑇 : 𝑉 ↦→ 𝑊 is linear, then ker(𝑇) and range(𝑇) are subspaces of 𝑊 .

Answer: Should be pretty straightforward using the conditions of a subspace.

Problem 6.2
Suppose that dim𝑉 = dim𝑊 = 𝑛 < ∞.

1. Show that if 𝑇 ∈ L(𝑉,𝑊) is injective, then it is also surjective.

2. Show that if 𝑇 ∈ L(𝑉,𝑊) is surjective, then it is also injective.

Answer: Use the rank-nullity theorem!

Problem 6.3
Construct explicit counterexamples of 𝑉 , 𝑊 and 𝑇 that will disprove both of the statements above if dim𝑉 ≠ dim𝑊 .
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Problem 6.4
Suppose 𝑇 ∈ L(R5,R3) and 𝑆 ∈ L(R3,R5). What are the possible dimensions of

1. ker(𝑇)

2. range(𝑇)

3. ker(𝑆)

4. range(𝑆)

5. ker(𝑇 ◦ 𝑆)

6. range(𝑇 ◦ 𝑆)

7. ker(𝑆 ◦ 𝑇)

8. range(𝑆 ◦ 𝑇)

Answer: By the rank-nullity theorem,

dimker(𝑇) dim range(𝑇) dimker(𝑆) dim range(𝑆)
5 0 0 3
4 1 1 2
3 2 2 1
2 3 3 0

dimker(𝑇 ◦ 𝑆) dim range(𝑇 ◦ 𝑆) dimker(𝑆 ◦ 𝑇) dim range(𝑆 ◦ 𝑇)
0 3 5 0
1 2 4 1
2 1 3 2
3 0 2 3

Note that dimker(𝑇) has to be lower bounded by 2 since dim range(𝑇) ≤ 3. Similarly, dim range(𝑆) has to be upper
bounded by 3 since dimker(𝑆) ≥ 0.
Since ker(𝑆 ◦𝑇) ⊆ ker(𝑇), we get that dimker(𝑆 ◦𝑇) ≤ dimker(𝑇). Again, following the same logic, we also get that
dimker(𝑇 ◦ 𝑆) ≤ dimker(𝑆).

Problem 6.5
Suppose that 𝑇 : 𝑉 ↦→ 𝑊 is an injective and surjective linear map. Show that the inverse map 𝑇−1 : 𝑊 ↦→ 𝑉 is linear.

Problem 6.6
Consider the map 𝑇 : R3 ↦→ R3 that orthogonally projects R3 onto the plane 𝑥 − 𝑦 + 2𝑧 = 0. Compute [𝑇]𝑒𝑒, the matrix
representation of 𝑇 with respect to the standard basis of R3.

Answer: First, start off by finding a basis for the plane. Observe that we have 2 free variables (say 𝑥 and 𝑦) and one
dependent variable (say 𝑧). Then,

𝑥 = 1, 𝑦 = 1 =⇒ 𝑧 = 0

𝑥 = −2, 𝑦 = 0 =⇒ 𝑧 = 1

Thus,

−2
0
1

 and

1
1
0

 will form a basis for the plane. To find a basis for the vectors perpendicular to the plane, take the
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cross product of the two vectors above to get

1

−1
2

 . Then, 𝛼 =


−2
0
1

 ,

1
1
0

 ,

1

−1
2

 will form a basis for R3 and

[𝑇]𝛼𝛼 =


1 0 0
0 1 0
0 0 0


Then,

[𝑇]𝑒𝑒 = [𝐼]𝑒𝛼 [𝑇]𝛼𝛼 [𝐼]𝛼𝑒

=


−2 1 1
0 1 −1
1 0 2



1 0 0
0 1 0
0 0 0



−2 1 1
0 1 −1
1 0 2


−1

Problem 6.7
Let 𝑇 : R2 ↦→ R2 be the reflection about the line 𝑦 = 𝑥 and 𝑆 : R2 ↦→ R2 be the reflection about the line 𝑦 = 2𝑥. Give
[𝑇]𝑒𝑒, [𝑆]𝑒𝑒, [𝑇 ◦ 𝑆]𝑒𝑒 and [𝑆 ◦ 𝑇]𝑒𝑒.

Answer: This is the same problem as example 5.7, but with the numbers changed. To retrieve [𝑇 ◦ 𝑆]𝑒𝑒 and [𝑆 ◦ 𝑇]𝑒𝑒,
just multiply [𝑇]𝑒𝑒 [𝑆]𝑒𝑒 and [𝑆]𝑒𝑒 [𝑇]𝑒𝑒 respectively.

Problem 6.8
Let P be the set of all polynomials on R and 𝑊 be the set of all infinite sequences of real numbers. Define 𝑇 ∈ L(P ,𝑊)
by 𝑇 𝑓 = ( 𝑓 (0), 𝑓 ′ (0), 𝑓 ′′ (0), 𝑓 ′′′ (0), . . . ). Is 𝑇 injective and/or surjective? Define range(𝑇) and ker(𝑇).

Answer: 𝑇 is not surjective since (1, 1, 1, . . . , 1, . . . ) ∈ 𝑊 (this is a sequence of all 1s). This sequence cannot be in
range(𝑇) since a polynomial of degree 𝑛 has 𝑓 (𝑛+1) (𝑥) = 𝑓 (𝑛+2) (𝑥) = · · · = 0 and each polynomial must have a finite
degree. However, 𝑇 is injective. If 𝑓 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥

2 + · · · + 𝑐𝑛𝑥
𝑛 and 𝑇 𝑓 = 0, then

𝑓 (0) = 𝑐0 =⇒ 𝑐0 = 0

𝑓 ′ (0) = 𝑐1 =⇒ 𝑐1 = 0

𝑓 ′′ (0) = 2𝑐2 =⇒ 𝑐2 = 0

𝑓 ′′′ (0) = 3𝑐2 =⇒ 𝑐3 = 0

and so on. Thus, ker(𝑇) = {0(𝑥)}
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7 Lecture 7

7.1 Review Problems

We just went over review problems for the upcoming midterm.
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8 Lecture 8

8.1 Eigenvectors and Eigenvalues

Definition 8.1: Operator
If 𝑇 ∈ L(𝑉,𝑉) = L(𝑉), then it is a linear operator.

Theorem 8.1
If 𝑉 is finite-dimensional and 𝑇 ∈ L(𝑉), then the following are equivalent:

1. 𝑇 is invertible

2. 𝑇 is injective

3. 𝑇 is surjective

Proof: The proof is left as an exercise for the reader. Though, it should follow pretty easily from the rank-nullity theorem!

Definition 8.2: Invariant
A subspace 𝑈 of 𝑉 is invariant under 𝑇 or 𝑇-invariant if 𝑇 (𝑈) = range(𝑇) ⊆ 𝑈, i.e., 𝑇𝑢 ∈ 𝑈 for all 𝑢 ∈ 𝑈.

Example 8.1
Let 𝑇 : R3 ↦→ R3 be the counterclockwise rotation about the 𝑧-axis by 𝜋

4 radians, i.e.,

[𝑇]𝑒𝑒 =

√
2/2 −

√
2/2 0√

2/2
√
2/2 0

0 0 1


Then, R3 has

• one 3-dimensional 𝑇-invariant subspace, namely R3

• one 2-dimensional 𝑇-invariant subspace, namely the 𝑥𝑦-plane

• one 1-dimensional 𝑇-invariant subspace, namely the 𝑧-axis

• one 0-dimensional 𝑇-invariant subspace, namely {0}

Example 8.2
Let 𝑇 : R3 ↦→ R3 be the orthogonal projection onto the plane spanned by 𝑣1 and 𝑣2 and let 𝑣3 be their cross-product.
This plane, i.e., span(𝑣1, 𝑣2), is 𝑇-invariant, as is the normal line to the plane, given by span(𝑣3)

The previous example is a special case of the following simple proposition:

Theorem 8.2
If 𝑇 : 𝑉 ↦→ 𝑉 is linear, then range(𝑇) and ker(𝑇) are both 𝑇-invariant.

Example 8.3
Let 𝑇 : R2 ↦→ R2 be the rotation counterclockwise by \ radians, where \ is a non-integer multiple of 𝜋 (i.e., \ ≠

. . . ,−𝜋, 0, 𝜋, 2𝜋, 3𝜋, . . . ). Then, 𝑇 has no 1-dimensional 𝑇-invariant subspaces.
Proof: Let 𝑈 = span(𝑣) for some 𝑣 ≠ 0. Then, 𝑈 being 𝑇-invariant would imply that 𝑇 (𝑈) = {0} or 𝑇 (𝑈) = 𝑈.
However, 𝑇 is invertible and 𝑇 does not rotate any line to itself. So 𝑇 has no 1-dimensional 𝑇-invariant subspaces.
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Definition 8.3: Eigenvector and Eigenvalue
Suppose 𝑣 ≠ 0 and 𝑇𝑣 = _𝑣 for some _ ∈ F. We then say that 𝑉 is an eigenvector of 𝑇 (with eigenvalue _) or that 𝑣 is a
_-eigenvector of 𝑇 .

Note 8.1
Observe that span(𝑣) is a 1-dimensional 𝑇-invariant subspace of 𝑉 iff 𝑣 is an eigenvector of 𝑇 . Thus, the 1-dimensional
𝑇-invariant subspaces of 𝑉 are precisely the spans of the eigenvectors of 𝑇 .

Example 8.4
Let 𝑇 : R2 ↦→ R2 be a rotation counterclockwise by \ such that \ ≠ . . . ,−𝜋, 0, 𝜋, 2𝜋, 3𝜋, . . . . Then, 𝑇 has no real-valued
eigenvalues. More on this later in the course.

Example 8.5
Let 𝑇 : R3 ↦→ R3 be defined by 𝑇 (𝑎, 𝑏, 𝑐) = (𝑏, 𝑐, 0). What are its eigenvalues and eigenvectors?

𝑇𝑣 = _𝑣 =⇒ 𝑇


𝑎

𝑏

𝑐

 = _


𝑎

𝑏

𝑐

 =⇒

𝑏

𝑐

0

 =


_𝑎

_𝑏

_𝑐


If _ ≠ 0, then 𝑐 = 0 =⇒ 𝑏 = 0 =⇒ 𝑎 = 0. However,


0
0
0

 = 0 cannot be an eigenvector. So, _ = 0 and

𝑎

0
0

 is a

0-eigenvector of 𝑇 .

Note 8.2
In the example above, 𝑇 is the left or backwards shift in R3. Note that span(𝑒1, 𝑒2) is 𝑇-invariant but span(𝑒1, 𝑒3) and
span(𝑒2, 𝑒3) are not.

Example 8.6
Let 𝑇 : C2 ↦→ C2 the linear map given by 𝑇 (𝑤, 𝑧) = (−𝑧, 𝑤). What are its eigenvectors and eigenvalues?

𝑇 (𝑤, 𝑧) = _(𝑤, 𝑧)
(−𝑧, 𝑤) = (_𝑤, _𝑧)

Note that 𝑧 = 0 =⇒ 𝑤 = 0 and vice versa. However, (0, 0) cannot be an eigenvector. Then, combining the two
equations,

−𝑧 = _𝑤

= _(_𝑧)
= _2𝑧

Since 𝑧 ≠ 0, we get that _2 = −1 =⇒ _ = ±𝑖. Then, the 𝑖-eigenvectors are given by {(𝑤,−𝑖𝑤) | 𝑤 ∈ C, 𝑤 ≠ 0} and the
−𝑖-eigenvectors are given by {(𝑤, 𝑖𝑤) | 𝑤 ∈ C, 𝑤 ≠ 0}.

Another observation: let 𝑉 be finite-dimensional, 𝑇 ∈ L(𝑉). Then,

_ is an eigenvalue of 𝑇 ⇐⇒ ∃𝑣 ≠ 0, 𝑇𝑣 = _𝑣

⇐⇒ ∃𝑣 ≠ 0, 𝑇𝑣 − _𝑣 = 0

⇐⇒ ∃𝑣 ≠ 0, (𝑇 − _𝐼)𝑣 = 0

⇐⇒ ker(𝑇 − _𝐼) ≠ {0}
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⇐⇒ 𝑇 − _𝐼 is not invertible
⇐⇒ 𝑇 − _𝐼 is not injective
⇐⇒ 𝑇 − _𝐼 is not surjective

In particular, 𝑇 being invertible is equivalent to saying that 0 is not an eigenvalue of 𝑇 . If 𝑇 is not invertible, then ker(𝑇) =
span(0 − eigenvectors) ∪ {0}.

Example 8.7: 5A Exercise 23
Let 𝑉 be finite dimensional and 𝑆, 𝑇 ∈ L(𝑉). Prove that 𝑆𝑇 and 𝑇𝑆 have the same eigenvalues.

Proof: Suppose that 𝑆𝑇𝑣 = _𝑣 for _ ≠ 0 and 𝑣 ≠ 0. Then, 𝑇 (𝑆𝑇𝑣) = 𝑇 (_𝑣) = _𝑇𝑣. Since _𝑣 ≠ 0, we know that
𝑆𝑇𝑣 ≠ 0 =⇒ 𝑇𝑣 ≠ 0 (otherwise, 𝑇𝑣 = 0 would imply 𝑆(0) = 0, which is not the case here). Thus, 𝑇𝑣 is a _-eigenvector
of 𝑇𝑆. This proves that non-zero eigenvalues of 𝑆𝑇 are all eigenvalues of 𝑇𝑆 too.

Next, note that 𝑆𝑇 is invertible iff 𝑇𝑆 is invertible (𝑆𝑇 invertible ⇐⇒ 𝑆 invertible and 𝑇 invertible ⇐⇒ 𝑇𝑆

invertible). So, 0 is an eigenvalue of 𝑆𝑇 iff 0 is an eigenvalue of 𝑇𝑆.

Example 8.8: 5A Exercise 28
Let 𝑉 be finite dimensional, with dim𝑉 ≥ 3, and 𝑇 ∈ L(𝑉) such that every 2-dimensional subspace of 𝑉 is 𝑇-invariant.
Prove that 𝑇 = 𝑐𝐼 for some 𝑐 ∈ F.

Proof: Choose any 𝑣 ≠ 0. Extend to a basis 𝑣, 𝑣2, . . . , 𝑣𝑛 of 𝑉 . Since span(𝑣, 𝑣2) is 2-dimensional and 𝑇-invariant,
𝑇𝑣 = 𝑐𝑣𝑣 + 𝑐2𝑣2 for some 𝑐𝑣 , 𝑐2 ∈ F. Again, span(𝑣, 𝑣3) is also 2-dimensional and 𝑇-invariant so 𝑇𝑣 = 𝑑𝑣𝑣 + 𝑑3𝑣3 for
some 𝑑𝑣 , 𝑑3 ∈ F. However, since 𝑣, 𝑣2, 𝑣3 are linearly independent, 𝑇𝑣 = 𝑇𝑣 = 𝑐𝑣𝑣 + 𝑐2𝑣2 = 𝑑𝑣𝑣 + 𝑑3𝑣3 implies that
𝑐2 = 0 = 𝑑3 and 𝑐𝑣 = 𝑑𝑣 . Thus, 𝑇𝑣 = 𝑐𝑣𝑣 for this unique 𝑐𝑣 ∈ F.

Now, we will prove the uniqueness of this 𝑐𝑣 . Choose any 𝑤 ≠ 0. We need to show that 𝑐𝑤 = 𝑐𝑣 . If 𝑤 = 𝑎𝑣, then
𝑇𝑤 = 𝑐𝑤𝑤 =⇒ 𝑇 (𝑎𝑣) = 𝑎𝑇𝑣 = 𝑎𝑐𝑣𝑣 = 𝑐𝑣 (𝑎𝑣) = 𝑐𝑣𝑤. So, 𝑐𝑣 = 𝑐𝑤 as required. However, if 𝑤 ∉ span(𝑣), then 𝑣 and
𝑤 are linearly independent and

𝑇 (𝑣 + 𝑤) = 𝑐𝑣+𝑤 (𝑣 + 𝑤)
= 𝑐𝑣+𝑤𝑣 + 𝑐𝑣+𝑤𝑤

𝑇𝑣 + 𝑇𝑤 = 𝑐𝑣𝑣 + 𝑐𝑤𝑤

This implies that 𝑐𝑣 = 𝑐𝑤 = 𝑐𝑣+𝑤 and 𝑇 = 𝑐𝐼 for 𝑐 = 𝑐𝑣 as desired.

Theorem 8.3
Let 𝑇 ∈ L(𝑉). Suppose _1, . . . , _𝑚 are distinct eigenvalues of 𝑇 with corresponding eigenvectors 𝑣1, . . . , 𝑣𝑚. Then,
𝑣1, . . . , 𝑣𝑚 are linearly independent.

Proof: Suppose the list of eigenvectors 𝑣1, . . . , 𝑣𝑚 are linearly dependent. Let 𝑘 be the smallest positive integer such that
𝑣𝑘 ∈ span(𝑣1, . . . , 𝑣𝑘−1). We know that 𝑘 exists by the LDL so there are scalars 𝑎𝑖 ∈ F such that 𝑣𝑘 = 𝑎1𝑣1 + · · · + 𝑎𝑘−1𝑣𝑘−1.
Applying 𝑇 to both sides,

𝑇𝑣𝑘 = _𝑘𝑣𝑘

= 𝑎1_1𝑣1 + · · · + 𝑎𝑘−1_𝑘−1𝑣𝑘−1

but

_𝑘𝑣𝑘 = _𝑘 (𝑎1𝑣1 + · · · + 𝑎𝑘−1𝑣𝑘−1)
= 𝑎1_𝑘𝑣1 + · · · + 𝑎𝑘 − 1_𝑘𝑣𝑘−1

However, 𝑣1, . . . , 𝑣𝑘−1 are linearly independent by the choice of 𝑘 defined above. Thus,

_𝑘𝑣𝑘 − _𝑘𝑣𝑘 = 0
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(𝑎1_1𝑣1 + · · · + 𝑎𝑘−1_𝑘−1𝑣𝑘−1) − (𝑎1_𝑘𝑣1 + · · · + 𝑎𝑘 − 1_𝑘𝑣𝑘−1) = 0

𝑎1 (_1 − _𝑘)𝑣1 + · · · + 𝑎𝑘−1 (_𝑘−1 − _𝑘)𝑣𝑘−1 = 0

Then, 𝑎1 (_1 − _𝑘) = · · · = 𝑎𝑘−1 (_𝑘−1 − _𝑘) = 0. Since all _𝑖 are distinct, this implies that 𝑎1 = · · · = 𝑎𝑘−1 = 0 so 𝑣𝑘 = 0.
However, this contradicts that 𝑣𝑘 is an eigenvector, so 𝑣1, . . . , 𝑣𝑚 are indeed linearly independent.

Theorem 8.4
If 𝑇 ∈ L(𝑉) and dim𝑉 = 𝑛, then 𝑇 has at most 𝑛 distinct eigenvalues.

Proof: Eigenvectors corresponding to distinct eigenvalues are linearly independent but 𝑉 can’t contain a list of linearly inde-
pendent vectors greater than 𝑛.

Example 8.9: 5A Exercise 13
Let 𝑉 be finite dimensional, 𝑇 ∈ L(𝑉) and _ ∈ F. Prove that there exists some 𝛼 ∈ F such that |𝛼 − _ | < 1

1000 and
𝑇 − 𝛼𝐼 is invertible.

Proof: Either 𝑇 −_𝐼 (i.e., _ is not its eigenvalue) is invertible, in which case we can choose 𝛼 = _. Or _ is an eigenvalue
of 𝑇 . Since 𝑇 has at most dim𝑉 many distinct eigenvalues, there are at most dim𝑉 values of

_ − 1

1000
< 𝛼 < _ + 1

1000

that will make 𝑇 − 𝛼𝐼 non-invertible. However, F is assumed to be some infinite field (like R or C) and only finitely
many values of 𝛼 are excluded from the range above. Therefore, you can always choose some other 𝛼 that will not be
an eigenvalue of 𝑇 , making 𝑇 − 𝛼𝐼 invertible.

Example 8.10: 5A Exercise 30
Suppose 𝑇 ∈ L(R3) and −4, 5,

√
7 are eigenvalues of 𝑇 . Prove that there exists some 𝑥 ∈ R3 such that (𝑇 − 9𝐼)𝑥 =

(−4, 5,
√
7).

Proof: Since dimR3 = 3, the scalars −4, 5,
√
7 are the only eigenvalues of 𝑇 . Thus, 9 is not an eigenvalue and 𝑇 − 9𝐼 is

invertible. Hence, we can always find an 𝑥 = (𝑇 − 9𝐼)−1 (−4, 5,
√
7).

Example 8.11: 5A Exercise 29
Let 𝑇 ∈ L(𝑉), dim range(𝑇) = 𝑘 and dim𝑉 = 𝑛. Prove that 𝑇 has at most 𝑘 + 1 distinct eigenvalues.

Proof: We will give two proofs of this statement:

1. Suppose that 𝑇 has 𝑗 distinct non-zero eigenvalues. Choose the corresponding eigenvectors 𝑣1, . . . , 𝑣 𝑗 . Let
𝑢1, . . . , 𝑢𝑛−𝑘 be a basis of ker(𝑇) and also the eigenvectors with eigenvalue 0. Then, 𝑣1, . . . , 𝑣 𝑗 , 𝑢1, . . . , 𝑢𝑛−𝑘 are
linearly independent.
Suppose 𝑐1𝑣1 + · · · + 𝑐 𝑗𝑣 𝑗 + 𝑑1𝑢1 + · · · + 𝑑𝑛−𝑘𝑢𝑛−𝑘 = 0. Then,

𝑇 (𝑐1𝑣1 + · · · + 𝑐 𝑗𝑣 𝑗 + 𝑑1𝑢1 + · · · + 𝑑𝑛−𝑘𝑢𝑛−𝑘) = 𝑇 (0)
𝑐1_1𝑣1 + · · · + 𝑐 𝑗_ 𝑗𝑣 𝑗 = 0

Since 𝑣1, . . . , 𝑣 𝑗 are linearly independent, 𝑐1_1 = · · · = 𝑐 𝑗_ 𝑗 = 0. However, since all _𝑖 ≠ 0, this further implies
that 𝑐1 = · · · = 𝑐 𝑗 = 0. Thus, 𝑑1𝑢1 + · · · + 𝑑𝑛−𝑘𝑢𝑛−𝑘 = 0. However, as 𝑢1, . . . , 𝑢𝑛−𝑘 are linearly independent too,
we get that 𝑑1 = · · · = 𝑑𝑛−𝑘 = 0.
Thus, the eigenvectors span a dim span(𝑣1, . . . , 𝑣 𝑗 ) = 𝑗 dimensional subspace of 𝑉 \ ker(𝑇). Since 𝑗 ≤ 𝑘 and
there can be no more than 𝑘 different eigenvectors in range(𝑇), the operator 𝑇 has at most 𝑗 + 1 ≤ 𝑘 + 1 distinct
eigenvalues (the final +1 comes from the 0 eigenvalue as dimker(𝑇) > 0).
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2. Let _1, . . . , _ 𝑗 be the distinct non-zero eigenvalues of 𝑇 . Let 𝑣1, . . . , 𝑣 𝑗 be the corresponding eigenvectors. Then,

𝑇 (𝑣𝑖) = _𝑖𝑣𝑖

𝑇

(
𝑣𝑖

_𝑖

)
= 𝑣𝑖

Therefore, 𝑣1, . . . , 𝑣 𝑗 ∈ range(𝑇) are linearly independent. Thus, 𝑗 ≤ 𝑘 . Since it can also have the 0 eigenvalue
for everything in ker(𝑇), the operator 𝑇 will have at most 𝑗 + 1 ≤ 𝑘 + 1 distinct eigenvalues.

Example 8.12: 5A Exercise 19
Let 𝑇 ∈ L(𝑉) and define it as 𝑇 (𝑥1, . . . , 𝑥𝑛) = 𝑇 (𝑥1 + · · · + 𝑥𝑛, . . . , 𝑥1 + · · · + 𝑥𝑛). What are its eigenvalues and
eigenvectors?

Proof: [𝑇]𝑒𝑒 should look like the following:

[𝑇]𝑒𝑒 =


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...

1 1 . . . 1


Note that dim range(𝑇) = 1 which, by the rank-nullity theorem, implies that dimker(𝑇) = 𝑛 − 1. Thus, 0 has to be an
eigenvalue of 𝑇 , and there must exist 𝑛− 1 linearly independent 0-eigenvectors of 𝑇 in ker(𝑇). Row-reducing the matrix
above will yield

RREF( [𝑇]𝑒𝑒) =


1 1 . . . 1
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


Thus,

𝑥1 + 𝑥2 + · · · + 𝑥𝑛 = 0

𝑥1 = −𝑥2 − · · · − 𝑥𝑛

−𝑥2 − · · · − 𝑥𝑛
𝑥2
𝑥3
...

𝑥𝑛


= 𝑥2



−1
1
0
...

0


+ 𝑥3



−1
0
1
...

0


+ · · · + 𝑥𝑛



−1
0
0
...

1


and the vectors in the linear combination above will form a basis for ker(𝑇). Thus, their span will include all of the
eigenvectors associated with _ = 0.

From the example above, we know that there can be at most one more distinct eigenvalue of𝑇 and since range(𝑇) = 1,
only one distinct eigenvector. Observe that

1 . . . 1
...

. . .
...

1 . . . 1



𝑎
...

𝑎

 =


𝑛𝑎
...

𝑛𝑎

 = 𝑛


𝑎
...

𝑎

 =⇒



𝑎
...

𝑎

 | 𝑎 ∈ F

 = span
©«

1
...

1


ª®®¬

works for _ = 𝑛.
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9 Lecture 9

9.1 Polynomials of Linear Maps

Definition 9.1: Integral Powers of Linear Transformations
Suppose 𝑇 ∈ L(𝑉) and 𝑚 is a positive integer. Define 𝑇𝑚 = 𝑇 ◦ · · · ◦ 𝑇 (T composed with itself 𝑚 times) and 𝑇0 = 𝐼,
the identity operator on 𝑉 . If 𝑇 is invertible, then let 𝑇−𝑚 = (𝑇−1)𝑚.

Note 9.1
One line proofs show that 𝑇𝑚𝑇𝑛 = 𝑇𝑚+𝑛 and (𝑇𝑚)𝑛 = 𝑇𝑚𝑛.

Definition 9.2: Polynomials of an Operator
If𝑇 ∈ L(𝑉) and 𝑝 ∈ P (F) is 𝑝(𝑧) = 𝑎0+𝑎1𝑧+𝑎2𝑧2+· · ·+𝑎𝑚𝑧𝑚 for all 𝑧 ∈ F, then 𝑝(𝑇) = 𝑎0𝐼+𝑎1𝑇 +𝑎2𝑇2+· · ·+𝑎𝑚𝑇𝑚.

Note 9.2
If 𝑇 ∈ L(𝑉), then the map P (F) ↦→ L(𝑉) given by 𝑝 ↦→ 𝑝(𝑇) is linear.

Recall that if 𝑝, 𝑞 are polynomials, then (𝑝𝑞) (𝑧) is defined to be 𝑝(𝑧)𝑞(𝑧). Following this, some multiplicative properties of
𝑝, 𝑞 ∈ P (F) and 𝑇 ∈ L(𝑉) are

1. (𝑝𝑞) (𝑇) = 𝑝(𝑇)𝑞(𝑇)

2. 𝑝(𝑇)𝑞(𝑇) = 𝑞(𝑇)𝑝(𝑇)

Example 9.1: 5B Exercise 7
Suppose 𝑇 ∈ L(𝑉). Prove that 9 is an eigenvalue of 𝑇2 iff 3 or -3 is an eigenvalue of 𝑇 .

Proof: If 𝑇𝑣 = _𝑣 with 𝑣 ≠ 0, then 𝑇 (𝑇𝑣) = 𝑇 (_𝑣) = _𝑇 (𝑣) = _(_𝑣) = _2𝑣. Thus, 𝑣 is an _2-eigenvector of 𝑇2. Letting
_ = ±3 concludes that 9 is an eigenvalue of 𝑇2.

On the other hand, if 9 is eigenvalue of 𝑇2, then 𝑇2 − 9𝐼 = (𝑇 − 3𝐼) (𝑇 + 3𝐼) is not invertible, which implies that at
least one of 𝑇 − 3𝐼 or 𝑇 + 3𝐼 is not invertible. Thus, at least one of −3 or 3 (or both) is an eigenvalue of 𝑇 .

Example 9.2: 5B Exercise 4
Suppose 𝑃 ∈ L(𝑉) and 𝑃2 = 𝑃. Prove that 𝑉 = ker(𝑃) ⊕ range(𝑃).

Proof: For every 𝑣 ∈ 𝑉 , it can be rewritten as 𝑣 = 𝑣−𝑃𝑣 +𝑃𝑣. However, 𝑣−𝑃𝑣 ∈ ker(𝑃) since 𝑃(𝑣−𝑃𝑣) = 𝑃𝑣−𝑃2𝑣 =

𝑃𝑣 − 𝑃𝑣 = 0 and 𝑃𝑣 ∈ range(𝑇) by definition. Thus, 𝑉 = ker(𝑇) + range(𝑇).
To prove that this sum is a direct sum, we also need to show ker(𝑇) ∩ range(𝑇) = {0}. Let 𝑦 ∈ range(𝑃) and

𝑦 ≠ 0. Then, 𝑦 = 𝑃𝑥 for some 𝑥 ∈ 𝑉 and 𝑃𝑦 = 𝑃2𝑥 = 𝑃𝑥 = 𝑦 ≠ 0. Thus, only 𝑦 = 0 is in both ker(𝑃) and range(𝑃).
Therefore, 𝑉 = ker(𝑃) ⊕ range(𝑃).

Theorem 9.1
Every operator on a finite-dimensional, non-zero, complex vector space has at least one eigenvalue.

Proof: Suppose dim𝑉 = 𝑛 > 0 and 𝑇 ∈ L(𝑉) where 𝑉 is a vector space over C. Pick some 𝑣 ∈ 𝑉 such that 𝑣 ≠ 0.
Then, 𝑣, 𝑇𝑣, 𝑇2𝑣, . . . , 𝑇𝑛𝑣 must be linearly dependent as it is a list of length 𝑛 + 1 is an 𝑛-dimensional vector space. So,
𝑎0𝑣 + 𝑎1𝑇𝑣 + · · · + 𝑎𝑛𝑇

𝑛𝑣 = 0 for some 𝑎0, . . . , 𝑎𝑛 ∈ F such that not all 𝑎𝑖 = 0. In fact, it must be some 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛 that is
nonzero because 𝑎1 = · · · = 𝑎𝑛 = 0 =⇒ 𝑎0𝑣 = 0. Since 𝑣 ≠ 0, it follows that 𝑎0 = 0.
Consider 𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧

2 + · · · + 𝑎𝑛𝑧
𝑛. By the fundamental theorem of algebra, this polynomial factors into a product

of linear terms, i.e., 𝑝(𝑧) = 𝑐(𝑧 − _1) . . . (𝑧 − _𝑛) for 𝑐, _1, . . . , _𝑛 ∈ C, and 𝑐 ≠ 0. Thus,

𝑎0𝑣 + 𝑎1𝑇𝑣 + · · · + 𝑎𝑛𝑇
𝑛𝑣 = 0
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(𝑎0𝐼 + 𝑎1𝑇 + · · · + 𝑎𝑛𝑇
𝑛)𝑣 = 0

𝑐(𝑇 − _1𝐼) . . . (𝑇 − _𝑛𝐼)𝑣 = 0

Thus, 𝑇 − _ 𝑗 𝐼 is non-injective (and consequently non-invertible) for at least one 𝑗 — all such _ 𝑗 will be an eigenvalue of 𝑇 .

Example 9.3: 5B Exercise 13
Let 𝑊 be a complex vector space and 𝑇 ∈ L(𝑊) has no eigenvalues. Prove that every 𝑇-invariant subspace of 𝑊 is
either {0} or infinite dimensional.

Proof: We will proceed with contradiction. Suppose 𝑈 ≠ {0} and 𝑈 is a finite-dimensional 𝑇-invariant subspace of 𝑊 .
Then, 𝑈 is a finite dimensional complex vector space and 𝑇 |𝑈 ∈ L(𝑈). Thus, 𝑇 |𝑈 has some eigenvalue _ ∈ C and an
associated eigenvector 𝑣 ∈ 𝑈. However, 𝑇𝑣 = 𝑇 |𝑈𝑣 = _𝑣 so 𝑣 is a _-eigenvector of 𝑇 as well, which is a contradiction.

9.2 Upper Triangular Matrices

Definition 9.3: Upper Triangular
A matrix is upper triangular if all entries below the main diagonal are equal to 0, i.e., if 𝑖 > 𝑗 , then 𝑎𝑖 𝑗 = 0.

Example 9.4

Some examples of upper-triangular matrices include

0 1 0
0 0 1
0 0 0

 and

1 2 3
0 4 5
0 0 6

 .

Theorem 9.2
Let 𝑇 ∈ L(𝑉) and 𝛼 = 𝑣1, . . . , 𝑣𝑛 be a basis of 𝑉 . Then, the following are equivalent:

1. [𝑇]𝛼𝛼 is upper triangular

2. 𝑇𝑣 𝑗 ∈ span(𝑣1, . . . , 𝑣 𝑗 ) for each 𝑗 = 1, . . . , 𝑛

3. span(𝑣1, . . . , 𝑣 𝑗 ) is 𝑇-invariant for each 𝑗 = 1, . . . , 𝑛

Proof: Suppose

[𝑇]𝛼𝛼 =

𝑇 (𝑣1) 𝑇 (𝑣2) 𝑇 (𝑣3) . . . 𝑇 (𝑣𝑛)©«
ª®®®®®¬

𝑣1 𝑎11 𝑎12 𝑎13 . . . 𝑎1𝑛
𝑣2 0 𝑎22 𝑎23 . . . 𝑎2𝑛
𝑣3 0 0 𝑎33 . . . 𝑎3𝑛
...

...
...

...
. . .

...

𝑣𝑛 0 0 0 . . . 𝑎𝑛𝑛

Note that statement 1 ⇐⇒ statement 2 is apparent from the definition of upper triangular matrices and the picture above.
Moreover, statement 3 already implies statement 2 so the only implication we really need to show is from statement 2 to statement
3. We know that

𝑇𝑣1 ∈ span(𝑣1) ⊆ span(𝑣1, . . . , 𝑣 𝑗 )
𝑇𝑣2 ∈ span(𝑣1, 𝑣2) ⊆ span(𝑣1, . . . , 𝑣 𝑗 )

...

𝑇𝑣 𝑗 ∈ span(𝑣1, . . . , 𝑣 𝑗 ) ⊆ span(𝑣1, . . . , 𝑣 𝑗 )

Thus, for any 𝑣 ∈ span(𝑣1, . . . , 𝑣 𝑗 ), the vector 𝑇𝑣 ∈ span(𝑣1, . . . , 𝑣 𝑗 ), making it 𝑇-invariant as desired.
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Theorem 9.3
Let 𝑉 be a finite-dimensional complex vector space and 𝑇 ∈ L(𝑉). Then, there is a basis 𝛼 of 𝑉 such that [𝑇]𝛼𝛼 is upper
triangular, i.e., the operator 𝑇 is “upper triangular”.

Proof: We will proceed by induction on 𝑛 = dim𝑉 :

• Base Case: For 𝑛 = 1, this statement is trivially true since there is an 𝑎 ∈ C such that for any basis 𝛼 of 𝑉 , [𝑇]𝛼𝛼 =
[
𝑎
]
.

• Suppose now that dim𝑉 > 1 and the desired result holds for all complex vector spaces with dimension less than dim𝑉 .
Let _ be an eigenvalue of 𝑇 (which exists since 𝑉 is complex and dim𝑉 > 0). Moreover, let 𝑈 = range(𝑇 − _𝐼). Since
𝑇 − _𝐼 is not surjective, 𝑈 is a proper subspace of 𝑉 . In other words, dim𝑈 < dim𝑉 .
Note that 𝑈 is still 𝑇-invariant. Why? For 𝑢 ∈ 𝑈, write 𝑇𝑢 = (𝑇 − _𝐼)𝑢 + _𝑢. Both parts of the sum are in 𝑈 so 𝑇𝑢 ∈ 𝑈.
Thus, 𝑇 |𝑈 ∈ L(𝑈).
By the induction hypothesis, there must be a basis 𝛾 = 𝑢1, . . . , 𝑢𝑚 of 𝑈 where [𝑇 |𝑈]𝛾𝛾 is upper triangular. Following the
theorem above, for each 𝑗 ≤ dim𝑈 = 𝑚, we get that 𝑇𝑢 𝑗 = (𝑇 |𝑈) (𝑢 𝑗 ) ∈ span(𝑢1, . . . , 𝑢 𝑗 ).
Expand 𝑢1, . . . , 𝑢𝑚 to a basis 𝛼 = 𝑢1, . . . , 𝑢𝑚, 𝑣1, . . . , 𝑣𝑙 of 𝑉 such that 𝑙 = 𝑛 − 𝑚. Write 𝑇𝑣𝑘 = (𝑇 − _𝐼)𝑣𝑘 + _𝑣𝑘 and
observe that (𝑇 − _𝐼)𝑣𝑘 ∈ range(𝑇 − _𝐼) = 𝑈 = span(𝑢1, . . . , 𝑢𝑚). Then,

𝑇𝑣𝑘 ∈ span(𝑢1, . . . , 𝑢𝑚, 𝑣𝑘) ⊆ span(𝑢1, . . . , 𝑢𝑚, 𝑣1, . . . , 𝑣𝑘)

for all 𝑘 . Thus, [𝑇]𝛼𝛼 is upper triangular.

Theorem 9.4
If 𝑇 ∈ L(𝑉) has an upper triangular matrix representation [𝑇]𝛼𝛼, then 𝑇 is invertible iff all the entries along the main
diagonal of [𝑇]𝛼𝛼 are nonzero.

Proof: Let 𝛼 = 𝑣1, . . . , 𝑣𝑛 be the basis of 𝑉 with respect to which 𝑇 has an upper-triangular matrix representation. We will
prove both directions of this theorem:

• Let the diagonal entries _1, . . . , _𝑛 of [𝑇]𝛼𝛼 be nonzero. Observe that 𝑇𝑣1 = _1𝑣1 or, equivalently, 𝑣1 = 𝑇 ( 𝑣1
_1
). Thus,

𝑣1 ∈ range(𝑇).
Next, 𝑇 ( 𝑣2

_2
) = 𝑎𝑣1 + 𝑣2 for some 𝑎 ∈ F such that 𝑎 =

𝑎12
_2

. Since 𝑇 ( 𝑣2
_2
) and 𝑎𝑣1 are both in range(𝑇), then so is 𝑣2

(since range(𝑇) is a subspace). We can continue this process (because we keep dividing by non-zero _𝑖 only) and notice
that all 𝑣𝑖 for 𝑖 ≤ 𝑛 are in range(𝑇). Thus, span(𝑣1, . . . , 𝑣𝑛) = range(𝑇) so 𝑇 is surjective, and thus invertible.

• First, since 𝑇𝑣1 = _𝑣1 and 𝑣1 ≠ 0, _1 and 𝑣1 are an eigenvalue-eigenvector pair. Since 𝑇 is invertible, _1 ≠ 0.
Next, let 1 ≤ 𝑗 ≤ 𝑛 and suppose _ 𝑗 = 0. Then, 𝑇 maps span(𝑣1, . . . , 𝑣 𝑗 ) to span(𝑣1, . . . , 𝑣 𝑗−1). However, this would
mean that 𝑇 restricted to span(𝑣1, . . . , 𝑣 𝑗 ) is not injective, i.e., there is some 𝑣 ∈ span(𝑣1, . . . , 𝑣 𝑗 ) such that 𝑣 ≠ 0 but
𝑇𝑣 = 0. This would contradict the invertibility of 𝑇 , so _ 𝑗 must be nonzero.

Theorem 9.5
If 𝑇 ∈ L(𝑉) has some upper triangular matrix representation [𝑇]𝛼𝛼, then the eigenvalues of 𝑇 are the diagonal entries of
[𝑇]𝛼𝛼.

Proof: Note that

[𝑇]𝛼𝛼 =



_1 ∗ ∗ . . . ∗
0 _2 ∗ . . . ∗
0 0 _3 . . . ∗
...

...
...

. . .
...

0 0 0 . . . _𝑛
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Let _ be some eigenvalue of 𝑇 . Then,

[𝑇 − _𝐼]𝛼𝛼 =



_1 − _ ∗ ∗ . . . ∗
0 _2 − _ ∗ . . . ∗
0 0 _3 − _ . . . ∗
...

...
...

. . .
...

0 0 0 . . . _𝑛 − _


According to the theorem above, this matrix is not invertible iff _ 𝑗 − _ = 0 =⇒ _ 𝑗 = _ for some 𝑗 . Since 𝑇 − _𝐼 = 𝑇 − _ 𝑗 𝐼 is
only non-invertible for 𝑇’s eigenvalues, the diagonal entries _1, . . . , _𝑛 must indeed be the eigenvalues of 𝑇 .

Example 9.5: 5B Exercise 14
Give an example of an operator whose matrix with respect to some basis contains only 0s on the diagonal, but the
operator is still invertible.

Answer: Consider 𝑇 : R2 ↦→ R2 to be the reflection about the line 𝑦 = 𝑥. Then,

[𝑇]𝑒𝑒 =
[
0 1
1 0

]
For a different example, consider 𝑆 : R2 ↦→ R2, which is defined as a rotation counterclockwise by 𝜋

2 radians. Then,

[𝑆]𝑒𝑒 =
[
0 −1
1 0

]
This example demonstrates that the upper-triangular condition is necessary to prove non-invertibility.

Example 9.6: 5B Exercise 15
Give an example of an operator whose matrix with respect to some basis contains only non-zero numbers on the diagonal,
but the operator is not invertible.

Answer: Consider 𝑇 : R2 ↦→ R2 to be the orthogonal projection onto the line 𝑦 = 𝑥. Then,

[𝑇]𝑒𝑒 =
[
1/2 1/2
1/2 1/2

]
is not invertible since 𝑇 is not surjective.
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10 Lecture 10

10.1 Diagonal Matrices

Definition 10.1: Diagonal
A matrix 𝐴 ∈ R𝑛×𝑛 is diagonal if 𝐴𝑖 𝑗 = 0 for 𝑖 ≠ 𝑗 , i.e., 𝐴 is of the form

𝐴 =


_1 0

. . .

0 _𝑛


Note 10.1
If 𝑇 ∈ L(𝑉) and [𝑇]𝛼𝛼 is a diagonal matrix with _1, . . . , _𝑛 along its diagonal (refer to the matrix above), then each _ 𝑗

is an eigenvalue of 𝑇 since the basis 𝛼 = 𝑣1, . . . , 𝑣𝑛 will tell us that the 𝑗 th column of [𝑇]𝛼𝛼 yields 𝑇𝑣 𝑗 = _ 𝑗𝑣 𝑗 .

Definition 10.2: Eigenspace
If 𝑇 ∈ L(𝑉) and _ is an eigenvalue of 𝑇 , then

𝐸 (_, 𝑇) = 𝐸_ (𝑇) = 𝐸_ = {_ − eigenvectors of 𝑇} ∪ {0} = ker(𝑇 − _𝐼)

is the _-eigenspace of 𝑇

Theorem 10.1
Each 𝐸 (_, 𝑇) is 𝑇-invariant.

Proof: There are many proofs of this fact. Here are two for fun:

• If 𝑣 ∈ 𝐸 (_, 𝑇), then 𝑇𝑣 = _𝑣 so 𝑇 (𝑇 (𝑣)) = 𝑇 (_𝑣) = _𝑇𝑣. So, either 𝑇𝑣 = 0 or 𝑇𝑣 is a _-eigenvector.

• Another way to view this:

(𝑇 − _𝐼)𝑣 = 0 =⇒ 𝑇 ◦ (𝑇 − _𝐼)𝑣 = 0 =⇒ (𝑇 ◦ 𝑇 − 𝑇 ◦ _𝐼)𝑣 = 0 =⇒ (𝑇 ◦ 𝑇 − _𝐼 ◦ 𝑇)𝑣 = 0 =⇒ (𝑇 − _𝐼) ◦ 𝑇𝑣 = 0

so 𝑇𝑣 ∈ ker(𝑇 − _𝐼) = 𝐸 (_, 𝑇).

Definition 10.3: Diagonalizable
𝑇 ∈ L(𝑉) is called diagonalizable if the operator 𝑇 has a diagonal matrix with respect to some basis of 𝑉 , i.e., there is a
basis 𝛼 such that [𝑇]𝛼𝛼 is diagonal.

Example 10.1
Let 𝑇 : R3 ↦→ R3 be the orthogonal projection onto the plane spanned by linearly independent vectors 𝑣1 and 𝑣2. Let
span(𝑣3) be the normal line to this plane (i.e., 𝑣3 = 𝑣1 × 𝑣2). Let 𝛼 be the list of these three vectors. Then,

[𝑇]𝛼𝛼 =


1 0 0
0 1 0
0 0 0


Example 10.2
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Following the previous example, consider the plane 𝑥 − 𝑦 + 2𝑧 = 0. Then,

𝛼 = {𝑣1, 𝑣2, 𝑣3} =


−2
0
1

 ,

1
1
0

 ,

1

−1
2




Note that

[𝑇]𝑒𝑒 = [𝐼]𝑒𝛼 [𝑇]𝛼𝛼 ( [𝐼]𝑒𝛼)−1

=


−2 1 1
0 1 −1
1 0 2



1 0 0
0 1 0
0 0 0



−2 1 1
0 1 −1
1 0 2


−1

is not diagonal. In other words, the diagonal matrix representation of an operator depends on the choice of basis.

Theorem 10.2
Let 𝑉 be finite dimensional and 𝑇 ∈ L(𝑉). Let _1, . . . , _𝑚 denote the distinct eigenvalues of 𝑇 . Then, the following
statements are equal:

1. 𝑇 is diagonalizable

2. 𝑉 has a basis consisting of the eigenvectors of 𝑇 — this is also called the eigenbasis

3. There are 1-dimensional 𝑇-invariant subspaces 𝑈1, . . . ,𝑈𝑛 such that 𝑉 = 𝑈1 ⊕ · · · ⊕ 𝑈𝑛

4. 𝑉 = 𝐸 (_1, 𝑇) ⊕ · · · ⊕ 𝐸 (_𝑚, 𝑇)

5. dim𝑉 = dim 𝐸 (_1, 𝑇) + · · · + dim 𝐸 (_𝑚, 𝑇)

Proof: We will prove multiple equivalences:

• statement 1 ⇐⇒ statement 2
As already shown above,

[𝑇]𝛼𝛼 =


`1

. . .

`𝑛


is diagonalizable for the basis of eigenvectors 𝛼 = 𝑣1, . . . , 𝑣𝑛 satisfying 𝑇𝑣 𝑗 = ` 𝑗𝑣 𝑗 for each 𝑗 . There are _𝑚 distinct
eigenvalues but some of them can be repeated, i.e., 𝑇𝑣𝑖 = _𝑣𝑖 and 𝑇𝑣 𝑗 = _𝑣 𝑗 for the same _ so we will take `1, . . . , `𝑛 to
be the sequence of all eigenvalues that permit repetitions.

• statement 2 ⇐⇒ statement 3
If 𝑣1, . . . , 𝑣𝑛 is the eigenbasis 𝑇 , let 𝑈 𝑗 = span(𝑣 𝑗 ). Then, 𝑈 𝑗 is a 1-dimensional 𝑇-invariant subspace of 𝑉 . Since
𝑣 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 for 𝑐𝑖𝑣𝑖 ∈ 𝑈𝑖 for some 𝑐1, . . . , 𝑐𝑛 ∈ F, we have that 𝑉 = 𝑈1 + · · · +𝑈𝑛.
Now suppose 0 = 𝑢1 + · · · + 𝑢𝑛 where 𝑢 𝑗 ∈ 𝑈 𝑗 for each 𝑗 ≤ 𝑛. Since 𝑢 𝑗 = 𝑐 𝑗𝑣 𝑗 , we know that 0 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛.
However, 𝑣1, . . . , 𝑣𝑛 are linearly independent so 𝑐1 = · · · = 𝑐𝑛 = 0, and 𝑢 𝑗 = 0. Thus, 𝑈1 ∩ · · · ∩ 𝑈𝑛 = {0} and
𝑉 = 𝑈1 ⊕ · · · ⊕ 𝑈𝑛 is a direct sum.
Lets prove the other direction. If 𝑈 𝑗 is 1-dimensional and 𝑇-invariant, then any 𝑣 𝑗 ≠ 0 with 𝑣 𝑗 ∈ 𝑈 𝑗 is an eigenvector of
𝑇 . Thus, 𝑣1, . . . , 𝑣𝑛 spans 𝑉 since 𝑉 = 𝑈1 + · · · +𝑈𝑛 and the linear independence of eigenvectors implies that 𝑣1, . . . , 𝑣𝑛
is the basis of 𝑇 .

• statement 2 =⇒ statement 4
The eigenbasis of 𝑇 implies that any vector in𝑉 is a linear combination of 𝑣1, . . . , 𝑣𝑛. So, 𝑉 = 𝐸 (_1, 𝑇) + · · · + 𝐸 (_𝑚, 𝑇).
However, this sum is also direct — if 0 = 𝑤1 + · · · + 𝑤𝑚 for 𝑤 𝑗 ∈ 𝐸 (_ 𝑗 , 𝑇), then the linear independence of eigenvectors
(of distinct eigenvalues) implies that 𝑤 𝑗 = 0 for all 𝑗 . Thus, 𝑉 = 𝐸 (_1, 𝑇) ⊕ · · · ⊕ 𝐸 (_𝑚, 𝑇).
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• statement 4 =⇒ statement 5
This is immediately follows from the fact that 𝑉 = 𝑈 ⊕𝑊 =⇒ dim𝑉 = dim𝑈 + dim𝑊 .

• statement 5 =⇒ statement 2
Suppose dim𝑉 = dim 𝐸 (_1, 𝑇) + · · · + dim 𝐸 (_𝑚, 𝑇). Choose bases for each 𝐸 (_ 𝑗 , 𝑇) and combine them to form a list
𝑣1, . . . , 𝑣𝑛 of the eigenvectors of 𝑇 such that dim𝑉 = 𝑛.
Suppose 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 = 0. Let 𝑢 𝑗 be the sum of the terms 𝑐𝑘𝑣𝑘 such that 𝑣𝑘 ∈ 𝐸 (_ 𝑗 , 𝑇). Then, 𝑢 𝑗 ∈ 𝐸 (_ 𝑗 , 𝑇)
and 𝑢1 + · · · + 𝑢𝑚 = 0. Since the eigenvectors corresponding to different eigenvalues are linearly independent, 𝑢 𝑗 = 0.
However, 0 = 𝑢 𝑗 =

∑
𝑘 𝑐𝑘𝑣𝑘 as defined above, but as all 𝑣𝑘 are linearly independent as well (they form the basis of

𝐸 (_ 𝑗 , 𝑇)), all 𝑐𝑘 = 0. Thus, 0 = 𝑢1 + · · · + 𝑢𝑚 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 implies that all 𝑣1, . . . , 𝑣𝑛 are linearly independent as
a whole and are, consequently, a basis.

Example 10.3
Let 𝑇 ∈ L(R2,R2) such that 𝑇 (𝑒1) = 𝑒1 and 𝑇 (𝑒2) = 𝑒1 + 𝑒2. Then,

[𝑇]𝑒𝑒 =
[
1 1
0 1

]
Is 𝑇 diagonalizable?

Answer: Note that _ = 1 is the only eigenvalue of𝑇 (since [𝑇]𝑒𝑒 is upper triangular, its eigenvalues lie along its diagonal).
Then,

𝐸 (1, 𝑇) = ker(𝑇 − 𝐼) = ker( [𝑇 − 𝐼]𝑒𝑒) = ker( [𝑇]𝑒𝑒 − [𝐼]𝑒𝑒) = ker

( [
0 1
0 0

] )
= span

( [
1
0

] )
Thus dimR2 = 2 ≠ 1 = dim 𝐸 (1, 𝑇), making 𝑇 not diagonalizable.

Theorem 10.3
If 𝑇 ∈ L(𝑉) has 𝑛 = dim𝑉 distinct eigenvalues, then 𝑇 is diagonalizable.

Proof: Suppose _1, . . . , _𝑛 are 𝑛 distinct eigenvalues of 𝑇 . Choose corresponding eigenvectors 𝑣1, . . . , 𝑣𝑛. Since they are
linearly independent by the distinctiveness of _1, . . . , _𝑛, they form a basis of 𝑉 and the matrix representation of 𝑇 with respect
to this basis looks like 

_1
_2

. . .

_𝑛


Observe that the matrix above is clearly diagonal, and each of its eigenspaces will be 1-dimensional.

Example 10.4

If 𝑇 ∈ L(R2) is represented by [𝑇]𝑒𝑒 =
[
1 1
0 2

]
instead, it is diagonalizable.

10.2 Similar Matrices
Consider the following commutative diagram:

R𝑛 R𝑛

R𝑛 R𝑛

[𝑇 ]𝛼𝛼

? ?

[𝑇 ]𝛽
𝛽
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The top layer is the matrix representation of 𝑇 in the 𝛼 basis, while the bottom layer is with respect to the 𝛽 basis. Can you find
vertical maps (the ?s) to make the following diagram commute? Yes! Consider the following diagram:

R𝑛 R𝑛

𝑉 𝑉

R𝑛 R𝑛

[𝑇 ]𝛼𝛼
�

𝛼 �

𝑇

�𝛽

� 𝛼

𝛽�

�

[𝑇 ]𝛽
𝛽

Notice that

[𝑇]𝛽
𝛽
= (𝛽 ◦ �̃�−1) [𝑇]𝛼𝛼 (�̃� ◦ 𝛽−1)

= [𝐼]𝛽𝛼 [𝑇]𝛼𝛼 [𝐼]𝛼𝛽

As we have already known so far!
The main idea behind change of basis is as follows: we can convert from a basis 𝛽 to a basis 𝛼, apply some transformation 𝑇

in basis 𝛼, and then convert back to basis 𝛽. This composition will achieve the same effect as applying the transformation 𝑇 in
basis 𝛽 directly.
For the sake of notation, let 𝑃 = [𝐼]𝛼𝛽 be the change of basis matrix from the “new” basis (the basis in which we are seeking to
represent 𝑇) to the “old” basis (the basis in which we already know the representation of 𝑇). Consequently, the matrix 𝑃−1 can
be interpreted as the map that will retrieve and convert to the “new” basis the result of applying 𝑇 in the “old” basis. In other
words, the linear map above can be rewritten as [𝑇]𝛽

𝛽
= 𝑃−1 [𝑇]𝛼𝛼𝑃.

We can generalize this idea further by the concept of similar matrices.

Definition 10.4: Similar
Let 𝐵, 𝐴 be 𝑛 × 𝑛 matrices. Then, 𝐵 and 𝐴 are similar iff there is some invertible matrix 𝑃 such that 𝐵 = 𝑃−1𝐴𝑃.

Theorem 10.4
Matrices 𝐴 and 𝐵 are similar iff for any isomorphism 𝜙 between 𝑉 � R𝑛, there exists a 𝑇 ∈ L(𝑉) and bases 𝛼 and 𝛽

such that 𝐴 = [𝑇]𝛼𝛼 and 𝐵 = [𝑇]𝛽
𝛽
.

Proof: Slight note about notation: let the matrices and their corresponding linear transformations be denoted by the same
symbol. For example, 𝑃 is a matrix but it also denotes the operator 𝑃 : R𝑛 ↦→ R𝑛 such that 𝑃(𝑥) = 𝑃𝑥. We will now prove both
directions of the biconditional:

• If 𝐵 = [𝑇]𝛽
𝛽

and 𝐴 = [𝑇]𝛼𝛼 for some 𝑇 ∈ L(𝑉), then we can simply take 𝑃 = [𝐼]𝛼𝛽 and let 𝐵 = 𝑃−1𝐴𝑃.

• Given the isomorphism 𝜙 and 𝐵 = 𝑃−1𝐴𝑃 for some 𝑃, let 𝛽 = 𝑣1, . . . , 𝑣𝑛 where 𝑣 𝑗 = 𝜙−1 (𝑒 𝑗 ), i.e., let 𝛽 = 𝜙. Now, let
�̃� = 𝑃 ◦ 𝛽 = 𝑃 ◦ 𝜙 =⇒ �̃�−1 = 𝜙−1 ◦ 𝑃−1 (why? it will make sense at the end). With this, let 𝑢 𝑗 = 𝜙−1 (𝑃−1𝑒 𝑗 ) and take
𝛼 = 𝑢1, . . . , 𝑢𝑛. This gives us our choice of bases for a given 𝜙 and 𝑃.

We want 𝐵 = [𝑇]𝛽
𝛽

for some 𝑇 ∈ L(𝑉). Note that setting 𝑇 = 𝛽−1 ◦ 𝐵 ◦ 𝛽 will work based on the following commutative
diagram:

𝑉 𝑉

R𝑛 R𝑛

𝑇

𝛽 𝛽

[𝑇 ]𝛽
𝛽
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Since 𝐴 = 𝑃𝐵𝑃−1 and [𝑇]𝛼𝛼 = [𝐼]𝛼𝛽 [𝑇]
𝛽

𝛽
[𝐼]𝛽𝛼, we can simply let 𝐴 = [𝑇]𝛼𝛼 and 𝑃 = [𝐼]𝛼𝛽 . This further justifies our choice

for defining �̃� = 𝑃 ◦ 𝛽 earlier since [𝐼]𝛼𝛽 is precisely defined as �̃� ◦ 𝛽−1, as we saw in chapter earlier!

Example 10.5: 5C Exercise 2
Let 𝑉 = ker(𝑇) ⊕ range(𝑇). Is 𝑇 ∈ L(𝑉) diagonalizable? No. Consider

[𝑇]𝑒𝑒 =
[
1 1
0 1

]
It is non-diagonalizable but still invertible. Thus, ker(𝑇) = {0} (from injectivity) and range(𝑇) = 𝑉 (from surjectivity),
satisfying 𝑉 = ker(𝑇) ⊕ range(𝑇) = {0} ⊕ 𝑉 .

10.3 Discussion Worksheet

Problem 10.1
Prove that if 𝑣1 and 𝑣2 are eigenvectors of 𝑇 with distinct eigenvalues, then 𝑣1 and 𝑣2 are linearly independent.

Problem 10.2
Show that 𝑇 and 𝑆−1𝑇𝑆 have the same eigenvalues. What is the relationship between the eigenvectors of 𝑇 and those of
𝑆−1𝑇𝑆?

Problem 10.3
Suppose that 𝑢, 𝑣 and 𝑢 + 𝑣 are eigenvectors. Prove that they correspond to the same eigenvalues.

Problem 10.4
Suppose𝑇 ∈ L(𝑉) and𝑇𝑛 = 0 for some integer 𝑛 > 0. Prove that 𝐼−𝑇 is invertible and that (𝐼−𝑇)−1 = 𝐼+𝑇 +· · ·+𝑇𝑛−1.

Problem 10.5
Let 𝑝 ∈ P (F), 𝑆, 𝑇 ∈ L(𝑉) and 𝑆 be invertible. Prove that 𝑝(𝑆𝑇𝑆−1) = 𝑆𝑝(𝑇)𝑆−1.

Problem 10.6
Suppose 𝑇 ∈ L(𝑉) and 𝑣 be a _-eigenvector of 𝑇 . If 𝑝 ∈ P (F), then prove that 𝑝(𝑇)𝑣 = 𝑝(_)𝑣.
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11 Lecture 11

11.1 Inner Products

Example 11.1
Let 𝑉 = R𝑛. Recall that the dot product of two vectors 𝑢, 𝑣 ∈ R𝑛 is given by 𝑢 · 𝑣 = 𝑢1𝑣1 + · · · + 𝑢𝑛𝑣𝑛.

The usual Euclidean notions of the “length” of a vector and the angle between two non-zero vectors in R𝑛 can be completely
recovered in terms of the dot product:

1. Length of 𝑢 ∈ R𝑛 is ∥𝑢∥ =
√
𝑢 · 𝑢 =

√︃
𝑢21 + · · · + 𝑢2𝑛

2. Angle between 𝑢, 𝑣 ∈ R𝑛. From the law of cosines, notice that

∥𝑣 − 𝑢∥2 = ∥𝑢∥2 + ∥𝑣∥2 − 2∥𝑢∥∥𝑣∥ cos \
(𝑣 − 𝑢) · (𝑣 − 𝑢) = ∥𝑢∥2 + ∥𝑣∥2 − 2∥𝑢∥∥𝑣∥ cos \

∥𝑣∥2 − 2(𝑢 · 𝑣) + ∥𝑢∥2 = ∥𝑢∥2 + ∥𝑣∥2 − 2∥𝑢∥∥𝑣∥ cos \
∥𝑢∥∥𝑣∥ cos \ = 𝑢 · 𝑣

\ = arccos

(
𝑢 · 𝑣

∥𝑢∥∥𝑣∥

)
Note 11.1
Therefore, 𝑢 and 𝑣 are perpendicular (orthogonal) iff 𝑢 · 𝑣 = 0. We also declare that 𝑢 = 0 is orthogonal to all vectors in
a vector space.

However, the length and angle notions determined by the dot product are not the only ones we could impose on R𝑛. We can
generalize the dot product by axiomatizing and abstracting its key features, in a similar way to our abstractions of addition and
scalar multiplication (first lecture) to the concept of a vector space over a field. Experimentation, time and reflection lead to the
abstract notions of an “inner product” on 𝑉 and an associated “inner-product space”.

Definition 11.1: Inner Product
Let𝑉 be a vector space over F. An inner product ⟨·, ·⟩ on𝑉 is a map ⟨·, ·⟩ : 𝑉 ×𝑉 ↦→ F satisfying the following properties:

• Positivity: ⟨𝑢, 𝑢⟩ ≥ 0 for all 𝑢 ∈ 𝑉

• Definiteness: ⟨𝑢, 𝑢⟩ = 0 iff 𝑢 = 0

• Additivity: ⟨𝑢 + 𝑣, 𝑤⟩ = ⟨𝑢, 𝑤⟩ + ⟨𝑣, 𝑤⟩ for all 𝑢, 𝑣, 𝑤 ∈ 𝑉

• Homogeneity: ⟨_𝑢, 𝑣⟩ = _⟨𝑢, 𝑣⟩ for all 𝑢, 𝑣 ∈ 𝑉, _ ∈ F

• Conjugate Symmetry: ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩ for all 𝑢, 𝑣 ∈ 𝑉

Definition 11.2: Inner Product Space
The collection of a vector space 𝑉 and its inner product ⟨·, ·⟩ is known as an inner product space.

Note 11.2
⟨𝑢, _𝑣⟩ = ⟨_𝑣, 𝑢⟩ = _⟨𝑣, 𝑢⟩ = _ ⟨𝑣, 𝑢⟩ = _⟨𝑢, 𝑣⟩

Note 11.3
If F = R, then 𝑧 = 𝑧. Then, ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩ and ⟨𝑢, _𝑣⟩ = _⟨𝑢, 𝑣⟩.
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Example 11.2
Here are some examples of common inner products:

1. For 𝑉 = R𝑛, define the regular dot product ⟨𝑢, 𝑣⟩ = 𝑢 · 𝑣 = 𝑢1𝑣1 + · · · + 𝑢𝑛𝑣𝑛

2. For 𝑉 = C𝑛, define the complex dot product ⟨𝑢, 𝑣⟩ = 𝑢 · 𝑣 = 𝑢1 𝑣1 + · · · + 𝑢𝑛 𝑣𝑛

3. For 𝑉 = 𝑙2 (N) (sequences with values in F such that
∑∞

𝑖=1 𝑧𝑖 𝑧𝑖 < ∞), define ⟨𝑧, 𝑤⟩ = ∑∞
𝑖=1 𝑧𝑖 𝑤𝑖

4. For 𝑉 = 𝐿2 ( [1,−1]) =
{
𝑓 ∈ 𝐶 ( [−1, 1]) |

∫ 1

−1 𝑓 (𝑥) 𝑓 (𝑥) d𝑥 < ∞
}
, define ⟨ 𝑓 , 𝑔⟩ =

∫ 1

−1 𝑓 (𝑧) 𝑔(𝑧) d𝑧

Note 11.4
In general, the complex dot product is generally also called the Euclidean inner product.

Example 11.3
Let 𝑉 = F𝑛. The Euclidean inner product is given by ⟨𝑧, 𝑤⟩ = 𝑧1 𝑤1 + · · · + 𝑧𝑛 𝑤𝑛. Why not define it as simply
⟨𝑧, 𝑤⟩ = 𝑧1𝑤1 + · · · + 𝑧𝑛𝑤𝑛? Because we want ⟨𝑧, 𝑧⟩ ≥ 0 for all 𝑧 ∈ 𝑉 but 𝑧 = 𝑖 for F = C makes it so that
⟨𝑖, 𝑖⟩ = 𝑖 · 𝑖 = −1 < 0.

Example 11.4
Let 𝑉 = F𝑛 and ⟨·, ·⟩ be an inner product on 𝑉 . Suppose 𝐴 is a matrix of the form 𝐴 = 𝐵𝐵∗ where 𝐵 is an 𝑛 × 𝑛 matrix,
𝐴 is invertible and 𝐵∗ = 𝐵𝑇 is the conjugate transpose of 𝐵 (more on this in the next chapter). Then, ⟨𝑢, 𝑣⟩ = ⟨𝐴𝑢, 𝑣⟩
is also an inner product on 𝑉 . Actually, any inner product on 𝑉 has this form for some 𝐴 where ⟨·, ·⟩ can be taken to be
the Euclidean inner product on 𝑉 .

Definition 11.3: Norm and Angle
If ⟨·, ·⟩ is an inner product on 𝑉 , then ∥𝑢∥ =

√︁
⟨𝑢, 𝑢⟩ is the norm (“magnitude” or “length”) of 𝑢. Similarly,

\ = arccos

(
⟨𝑢, 𝑣⟩
∥𝑢∥∥𝑣∥

)
is the angle between 𝑢 and 𝑣 for 𝑢, 𝑣 ≠ 0.

Definition 11.4: Orthogonal
If ⟨𝑢, 𝑣⟩ is an inner product on 𝑉 , then 𝑢 and 𝑣 are orthogonal if ⟨𝑢, 𝑣⟩ = 0.

Theorem 11.1
0 is the only vector orthogonal to itself.

Proof: ⟨𝑣, 𝑣⟩ = 0 iff 𝑣 = 0 is an axiom for ⟨·, ·⟩ to be a valid inner product.

Theorem 11.2: Pythagorean Theorem
Let 𝑢, 𝑣 be orthogonal in an inner product space 𝑉 . Then, ∥𝑢 + 𝑣∥2 = ∥𝑢∥2 + ∥𝑣∥2.

Proof:

∥𝑢 + 𝑣∥2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩
= ⟨𝑢 + 𝑢⟩ + ⟨𝑣, 𝑢⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩
= ∥𝑢∥2 + ⟨𝑣, 𝑢⟩ + ⟨𝑢, 𝑣⟩ + ∥𝑣∥2
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If 𝑢, 𝑣 are orthogonal, then ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩ = 0. Then, ⟨𝑣, 𝑢⟩ = 0 too. Thus, ∥𝑢 + 𝑣∥2 = ∥𝑢∥2 + ∥𝑣∥2 as expected.

Definition 11.5: Orthogonal Projection
Let 𝑢, 𝑣 ∈ 𝑉 and 𝑏 ≠ 0 for an inner product space 𝑉 with inner product ⟨·, ·⟩. Then, there is a unique 𝑐 ∈ F and a unique
𝑤 ∈ 𝑉 such that 𝑢 = 𝑐𝑣 + 𝑤 and ⟨𝑣, 𝑤⟩ = 0. This unique 𝑐𝑣 is called the orthogonal projection of 𝑢 onto span(𝑣) or
proj𝑣 𝑢 or projspan(𝑣) 𝑢. The vector 𝑤 is, thus, uniquely determined to be 𝑢 − projspan(𝑣) 𝑢.

Proof: We require that 𝑢 = 𝑐𝑣 + 𝑤 with ⟨𝑣, 𝑤⟩ = ⟨𝑤, 𝑣⟩ = 0. Then, 𝑤 = 𝑢 − 𝑐𝑣 and,

⟨𝑤, 𝑣⟩ = 0

⟨𝑢 − 𝑐𝑣, 𝑣⟩ = 0

⟨𝑢, 𝑣⟩ − 𝑐⟨𝑣, 𝑣⟩ = 0

This implies that 𝑐 =
⟨𝑢,𝑣⟩
⟨𝑣,𝑣⟩ =

⟨𝑢,𝑣⟩
∥𝑣 ∥2 . Then, projspan(𝑣) 𝑢 = 𝑐𝑣 =

⟨𝑢,𝑣⟩
⟨𝑣,𝑣⟩ 𝑣.

Theorem 11.3: Cauchy-Schwarz Inequality
Let 𝑉 be an inner product space with ⟨·, ·⟩ as its inner product. Then, |⟨𝑢, 𝑣⟩| ≤ ∥𝑢∥∥𝑣∥ for all 𝑢, 𝑣 ∈ 𝑉 with equality iff
𝑢 and 𝑣 are linearly dependent/parallel.

Proof: If 𝑣 = 0, then |⟨𝑢, 0⟩| = 0 = ∥𝑢∥∥0∥. Otherwise, 𝑢 = projspan(𝑣) 𝑢 + (𝑢 − projspan(𝑣) 𝑢). Let 𝑤 = 𝑢 − projspan(𝑣) 𝑢 for
convenience. Then,

∥𝑢∥2 =
projspan(𝑣) 𝑢2 + ∥𝑤∥2

≥
projspan(𝑣) 𝑢2

=

 ⟨𝑢, 𝑣⟩⟨𝑣, 𝑣⟩ 𝑣
2

=
|⟨𝑢, 𝑣⟩|2

∥𝑣∥2

The first statement follows from the Pythagorean theorem. Then,

∥𝑢∥2∥𝑣∥2 ≥ |⟨𝑢, 𝑣⟩|2

∥𝑢∥∥𝑣∥ ≥ |⟨𝑢, 𝑣⟩|

We have an equality iff 𝑤 = 0, i.e., 𝑢 − projspan(𝑣) 𝑢 = 0 =⇒ 𝑢 = projspan(𝑣) 𝑢 since this implies that 𝑢 and 𝑣 lie on the same
line (i.e., they are linearly dependent/parallel).

Theorem 11.4: Triangle Inequality
∥𝑢 + 𝑣∥ ≤ ∥𝑢∥ + ∥𝑣∥. This is an equality iff 𝑢 and 𝑣 are linearly dependent via a non-negative scalar.

Proof: Quick fact: the absolute value of a complex number 𝑧 = 𝑎 + 𝑏𝑖 is |𝑧 | =
√
𝑎2 + 𝑏2 so Re(𝑧)2 = 𝑎2 ≤ 𝑎2 + 𝑏2 = |𝑧 |2 =⇒

Re(𝑧) ≤ |𝑧 |. Now,

∥𝑢 + 𝑣∥2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩
= ∥𝑢∥2 + ⟨𝑣, 𝑢⟩ + ⟨𝑢, 𝑣⟩ + ∥𝑣∥2

= ∥𝑢∥2 + ⟨𝑢, 𝑣⟩ + ⟨𝑢, 𝑣⟩︸           ︷︷           ︸
2Re(⟨𝑢,𝑣⟩)

+∥𝑣∥2

≤ ∥𝑢∥2 + 2|⟨𝑢, 𝑣⟩| + ∥𝑣∥2

≤ ∥𝑢∥2 + 2∥𝑢∥∥𝑣∥ + ∥𝑣∥2
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= (∥𝑢∥ + ∥𝑣∥)2

Taking the square root, ∥𝑢 + 𝑣∥ ≤ ∥𝑢∥ + ∥𝑣∥. This is an equality iff ∥𝑢∥∥𝑣∥ = |⟨𝑢, 𝑣⟩| = Re(⟨𝑢, 𝑣⟩). Cauchy-Schwarz says that
∥𝑢∥∥𝑣∥ = |⟨𝑢, 𝑣⟩| is true iff 𝑢 and 𝑣 are linearly independent. Moreover, Re(⟨𝑢, 𝑣⟩) = |⟨𝑢, 𝑣⟩| ≥ 0 is true iff the scalar relating 𝑢

to 𝑣 is also non-negative.

Theorem 11.5: Parallelogram Equality/Identity
∥𝑢 + 𝑣∥2 + ∥𝑢 − 𝑣∥2 = 2(∥𝑢∥2 + ∥𝑣∥2)

Proof: Just expand both sides:

∥𝑢 + 𝑣∥2 + ∥𝑢 − 𝑣∥2 = ⟨𝑢 + 𝑣, 𝑢 + 𝑣⟩ + ⟨𝑢 − 𝑣, 𝑢 − 𝑣⟩
= ⟨𝑢, 𝑢⟩ + ⟨𝑣, 𝑢⟩ + ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩ + ⟨𝑢, 𝑢⟩ − ⟨𝑣, 𝑢⟩ − ⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩
= 2(⟨𝑢, 𝑢⟩ + ⟨𝑣, 𝑣⟩)
= 2(∥𝑢∥2 + ∥𝑣∥2)

Example 11.5: 6A Exercise 11
Prove that if 𝑎, 𝑏, 𝑐, 𝑑 are all ≥ 0, then

16 ≤ (𝑎 + 𝑏 + 𝑐 + 𝑑)
(
1

𝑎
+ 1

𝑏
+ 1

𝑐
+ 1

𝑑

)
1. Attempt #1

Let 𝑢 =


𝑎

𝑏

𝑐

𝑑

 and 𝑣 =


1/𝑎
1/𝑏
1/𝑐
1/𝑑

 . Then, ⟨𝑢, 𝑣⟩ = 4 =⇒ |⟨𝑢, 𝑣⟩|2 = 16. Cauchy-Schwarz gives us:

|⟨𝑢, 𝑣⟩|2 ≤ ∥𝑢∥2∥𝑣∥2

= ⟨𝑢, 𝑢⟩⟨𝑣, 𝑣⟩

= (𝑎2 + 𝑏2 + 𝑐2 + 𝑑2)
(
1

𝑎2
+ 1

𝑏2
+ 1

𝑐2
+ 1

𝑑2

)
This, is not exactly what we want. Lets try something else.

2. Attempt #2

Now, let 𝑢 =


√
𝑎√
𝑏√
𝑐√
𝑑

 and 𝑣 =


1/
√
𝑎

1/
√
𝑏

1/
√
𝑐

1/
√
𝑑

 . Then,

|⟨𝑢, 𝑣⟩|2 ≤ ∥𝑢∥2∥𝑣∥2����√𝑎 · 1
√
𝑎
+
√
𝑏 · 1

√
𝑏
+
√
𝑐 · 1

√
𝑐
+
√
𝑑 · 1

√
𝑑

����2 ≤ ⟨𝑢, 𝑣⟩∥𝑣, 𝑣∥

|1 + 1 + 1 + 1|2 ≤
(√

𝑎
2 +

√
𝑏
2
+
√
𝑐
2 +

√
𝑑
2
) ( 1

√
𝑎
2
+ 1
√
𝑏
2
+ 1
√
𝑐
2
+ 1
√
𝑑
2

)
16 ≤ (𝑎 + 𝑏 + 𝑐 + 𝑑)

(
1

𝑎
+ 1

𝑏
+ 1

𝑐
+ 1

𝑑

)
So, Cauchy-Schwarz gives us the desired inequality.
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Example 11.6: 6A Exercise 10
Find vectors 𝑢, 𝑣 ∈ R2 such that 𝑢 is a scalar multiple of (1, 3) and 𝑣 is orthogonal to (1, 3) and 𝑢 + 𝑣 = (1, 2). Let
𝑢 = (𝑐, 3𝑐) for some 𝑐 ∈ R and let 𝑣 = (𝑎, 𝑏). Then ⟨𝑣, (1, 3)⟩ = (𝑎, 𝑏) · (1, 3) = 𝑎 + 3𝑏 = 0 =⇒ 𝑎 = −3𝑏. Since,
𝑢 + 𝑣 = (1, 2), then

(𝑐, 3𝑐) + (−3𝑏, 𝑏) = (1, 2)
𝑐 − 3𝑏 = 1

3𝑐 + 𝑏 = 2

Solving the system yields 𝑏 = − 1
10 and 𝑐 = 7

10 . The, 𝑢 =
(
7
10 ,

21
10

)
and 𝑣 =

(
3
10 ,−

1
10

)
.

11.2 Normed Vector Spaces

Definition 11.6: Norm
Let 𝑉 be a vector space over F = R or C. A norm on 𝑉 is a map ∥·∥ : 𝑉 ↦→ R such that

1. ∥𝑣∥ = 0 iff 𝑣 = 0, else ∥𝑣∥ > 0 otherwise

2. ∥_𝑣∥ = |_ |∥𝑣∥ for all 𝑣 ∈ 𝑉, _ ∈ F

3. ∥𝑢 + 𝑣∥ ≤ ∥𝑢∥ + ∥𝑣∥ for all 𝑢, 𝑣 ∈ 𝑉 (triangle inequality)

Example 11.7
If 𝑉 is an inner product space, then ∥𝑣∥ =

√︁
⟨𝑣, 𝑣⟩ makes 𝑉 a normed vector space as well.

However, there are many interesting examples of normed vector spaces for which the norm is not induced by an inner product!

Example 11.8
Let 𝑝-norm on 𝑥 ∈ R𝑛 or 𝑥 ∈ C𝑛 for 𝑝 ≥ 1 be defined as

∥𝑥∥ 𝑝 = (|𝑥1 |𝑝 + · · · + |𝑥𝑛 |𝑝)
1
𝑝 for 𝑝 ≠ ∞

∥𝑥∥∞ = max {|𝑥1 |, . . . , |𝑥𝑛 |}

Observe that ∥·∥ 𝑝 is a valid norm on F𝑛. However, establishing the triangle inequality for 𝑝 ≠ ∞, 𝑝 ≠ 2 is not an easy
task, so it has a special name: Minkowski’s Inequality (proved using Hölder’s Inequality).

Note 11.5
Note that ∥·∥ 𝑝 indeed comes from an inner product iff 𝑝 = 2.

Example 11.9: 6A Exercise 18, 6A Exercise 21

Prove the fact above for R2. Let 𝑢 =

[
1
0

]
and 𝑣 =

[
0
1

]
. Then,

∥𝑢 + 𝑣∥2𝑝 = (1𝑝 + 1𝑝)
2
𝑝

= 2
2
𝑝

∥𝑢 − 𝑣∥2𝑝 = (1𝑝 + |−1|𝑝)
2
𝑝

= 2
2
𝑝
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2(∥𝑢∥2𝑝 + ∥𝑣∥2𝑝) = 2
(
(1𝑝 + 0𝑝)

2
𝑝 + (0𝑝 + 1𝑝)

2
𝑝

)
= 4

If ∥·∥ 𝑝 is induced by an inner product, then it would satisfy the parallelogram identity:

∥𝑢 + 𝑣∥2𝑝 + ∥𝑢 − 𝑣∥2𝑝 = 2(∥𝑢∥2𝑝 + ∥𝑣∥2𝑝)

2
2
𝑝 + 2

2
𝑝 = 4

21+
2
𝑝 = 22

Then, 1 + 2
𝑝
= 2 =⇒ 𝑝 = 2 is the only norm induced by an inner product, namely the Euclidean inner product.

Example 11.10
Here is a visualization of what different norms look like:

𝑝 = ∞ 𝑝 = 4 𝑝 = 2 𝑝 = 1 𝑝 = 1
2

In order, from left to right:

• Unit circle for the ∞-norm given by
{
𝑣 ∈ R2 | ∥𝑣∥∞ = 1

}
. Note that ∥𝑣∥∞ = max 𝑗≤2

��𝑣 𝑗

��, so this shape lies along
𝑥 = ±1, 𝑦 = ±1, creating a square.

• Unit circle for the 4-norm is given by
{
𝑣 ∈ R2 | ∥𝑣∥4 =

4

√︃
|𝑣1 |4 + |𝑣2 |4 = 1

}
. It is also called a “hyper ellipse”.

• Unit circle for the 2-norm is given by
{
𝑣 ∈ R2 | ∥𝑣∥2 =

√︃
|𝑣1 |2 + |𝑣2 |2 = 1

}
. This is the normal unit circle.

• Unit circle for the 1-norm is given by
{
𝑣 ∈ R2 | ∥𝑣∥1 = |𝑣1 | + |𝑣2 | = 1

}
. This diamond shape can also be obtained

manually by doing casework with absolute values.

• Unit circle for the 1
2 -norm is given by

{
𝑣 ∈ R2 | ∥𝑣∥ 1

2
= (√𝑣1 +

√
𝑣2)2 = 1

}
. However, if 0 < 𝑝 < 1, then ∥·∥ 𝑝

actually is not a norm because it satisfies ∥𝑢 + 𝑣∥ 𝑝 ≥ ∥𝑢∥ 𝑝 + ∥𝑣∥ 𝑝 (the flipped triangle inequality) instead!
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12 Lecture 12

A note on 𝐿2-inner products. Consider 𝑉 = 𝐿2 ( [−1, 1]) = 𝐶 ( [−1, 1],R), i.e., the set of real-valued functions continuous on
the interval [−1, 1]. Then, ⟨ 𝑓 , 𝑔⟩ =

∫ 1

−1 𝑓 (𝑥)𝑔(𝑥) d𝑥 makes 𝑉 a valid inner-product space. Here is a generalization of it:

𝑉 = 𝐿2 (R) =
{
𝑓 : R ↦→ R |

∫ ∞

−∞
| 𝑓 (𝑥) |2 d𝑥 < ∞

}
Therefore, the inner product ⟨ 𝑓 , 𝑔⟩ =

∫ ∞
−∞ 𝑓 (𝑥)𝑔(𝑥) d𝑥 will make 𝑉 a valid inner-product space again.

However, how do we know for 𝑓 , 𝑔 ∈ 𝐿2 (R), the inner product |⟨ 𝑓 , 𝑔⟩| < ∞? Recall that the Cauchy-Schwarz inequality says:

|⟨ 𝑓 , 𝑔⟩| ≤ ∥ 𝑓 ∥∥𝑔∥����∫ ∞

−∞
𝑓 (𝑥)𝑔(𝑥) d𝑥

���� ≤ (∫ ∞

−∞
| 𝑓 (𝑥) |2 d𝑥

) 1
2
(∫ ∞

−∞
|𝑔(𝑥) |2 d𝑥

) 1
2

The right hand side is a product of two finite quantities so the inner product must be finite as well!

12.1 Orthonormality

Definition 12.1: Orthogonal and Orthonormal
A list of vectors is orthogonal if each vector in the list is orthogonal to all the other vectors in the list. A list of vectors
is orthonormal if it is orthogonal and each vector in the list has norm 1.

Note 12.1
The list of standard basis vectors 𝑒1, . . . , 𝑒𝑚 is orthonormal since

〈
𝑒 𝑗 , 𝑒𝑘

〉
= 0 for 𝑗 ≠ 𝑘 and

〈
𝑒 𝑗 , 𝑒𝑘

〉
= 1 for 𝑗 = 𝑘 .

Note 12.2
Notation: from now on, the list 𝑒1, . . . , 𝑒𝑚 represents a general orthonormal list, and not necessarily a sub-collection of
the standard basis. Everything should be fairly clear with context.

Example 12.1
Examples of orthonormal bases:

1. The standard basis of F𝑛 (defined for the Euclidean inner product)

2.
(

1√
3
, 1√

3
, 1√

3

)
,
(
− 1√

2
, 1√

2
, 0

)
,
(

1√
6
, 1√

6
,− 2√

6

)
is an orthonormal basis in R3 (again, with respect to the Euclidean

inner product)

Theorem 12.1
If 𝑒1, . . . , 𝑒𝑚 is orthonormal in 𝑉 , then ∥𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚∥2 = |𝑎1 |2 + · · · + |𝑎𝑚 |2

Proof: Following the Pythagorean theorem,

∥𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚∥2 = ∥𝑎1𝑒1∥2 + · · · + ∥𝑎𝑚𝑒𝑚∥2

= |𝑎1 |2∥𝑒1∥2 + · · · + |𝑎𝑚 |2∥𝑒𝑚∥2

= |𝑎1 |2 + · · · + |𝑎𝑚 |2
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Theorem 12.2
If 𝑒1, . . . , 𝑒𝑚 is orthonormal, then 𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚 = 0 =⇒ 𝑎1 = · · · = 𝑎𝑚 = 0.

Proof: Following the results from above,

𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚 = 0

∥𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚∥2 = ∥0∥2

|𝑎1 |2 + · · · + |𝑎𝑚 |2 = 0

Since |𝑎𝑖 | ≥ 0 for 𝑗 ≤ 𝑚, |𝑎1 |2 + · · · + |𝑎𝑚 |2 = 0 =⇒ 𝑎1 = · · · = 𝑎𝑚 = 0.

Some consequences of this theorem:

• A non-zero orthogonal list is always linearly independent.

• If dim𝑉 = 𝑛 and 𝑒1, . . . , 𝑒𝑛 is orthonormal, then it is a basis.

Theorem 12.3
If 𝑒1, . . . , 𝑒𝑚 are orthonormal and 𝑣 = 𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚, then 𝑎 𝑗 =

〈
𝑣, 𝑒 𝑗

〉
and

∥𝑣∥2 = |⟨𝑣, 𝑒1⟩|2 + · · · + |⟨𝑣, 𝑒𝑚⟩|2

Proof: For each 𝑗 ≤ 𝑛, 〈
𝑣, 𝑒 𝑗

〉
= 𝑎1

〈
𝑒1, 𝑒 𝑗

〉
+ · · · + 𝑎 𝑗

〈
𝑒 𝑗 , 𝑒 𝑗

〉
+ · · · + 𝑎𝑚

〈
𝑒𝑚, 𝑒 𝑗

〉
= 𝑎1 · 0 + · · · + 𝑎 𝑗 · 1 + · · · + 𝑎𝑚 · 0
= 𝑎 𝑗

Then,

𝑣 = ⟨𝑣, 𝑒1⟩𝑒1 + · · · + ⟨𝑣, 𝑒𝑚⟩𝑒𝑚
∥𝑣∥2 = |⟨𝑣, 𝑒1⟩|2 + · · · + |⟨𝑣, 𝑒𝑚⟩|2

The last equality simply follows from theorem 12.1.

Theorem 12.4: Gram-Schmidt Process
If 𝑣1, . . . , 𝑣𝑚 are linearly independent in 𝑉 , consider the process given by

• Let 𝑒1 =
𝑣1

∥𝑣1 ∥

• For 𝑗 = 2, . . . , 𝑚, define 𝑒 𝑗 inductively to be

𝑒 𝑗 =
𝑣 𝑗 −

〈
𝑣 𝑗 , 𝑒1

〉
𝑒1 − · · · −

〈
𝑣 𝑗 , 𝑒 𝑗−1

〉
𝑒 𝑗−1𝑣 𝑗 −

〈
𝑣 𝑗 , 𝑒1

〉
𝑒1 − · · · −

〈
𝑣 𝑗 , 𝑒 𝑗−1

〉
𝑒 𝑗−1


Then, 𝑒1, . . . , 𝑒𝑚 is an orthonormal list of vectors in 𝑉 such that span(𝑣1, . . . , 𝑣𝑚) = span(𝑒1, . . . , 𝑒𝑚) for each 𝑗 ≤ 𝑚.

The proof of the validity of this process is given in Axler. However, what is the intuition/idea behind these formulas? Note that
𝑒1 is just 𝑣1 normalized. Consider 𝑣2 − projspan(𝑣1 ) 𝑣2. This is orthogonal to 𝑣1 but span(𝑒1) = span(𝑣1) so

𝑣2 − projspan(𝑣1 ) 𝑣2 = 𝑣2 − projspan(𝑒1 ) 𝑣2

= 𝑣2 −
⟨𝑣2, 𝑒1⟩𝑒1
∥𝑒1∥2

Linear Algebra 57



Math 110, Summer 2021 Notes Aryan Jain

= 𝑣2 − ⟨𝑣2, 𝑒1⟩𝑒1

𝑒2 =
𝑣2 − ⟨𝑣2, 𝑒1⟩𝑒1
∥𝑣2 − ⟨𝑣2, 𝑒1⟩𝑒1∥

Then, 𝑒2 is a normal vector that is orthogonal to span(𝑣1) = span(𝑒1). Note that 𝑣2 can be rearranged to be a linear
combination of both 𝑒1 and 𝑒2 so 𝑣2 ∈ span(𝑒1, 𝑒2). Moreover, as 𝑣1 ∈ span(𝑒1) ⊂ span(𝑒1, 𝑒2), this further implies that
span(𝑣1, 𝑣2) = span(𝑒1, 𝑒2).
Now, consider the vector 𝑒3 =

𝑣3−projspan(𝑣1 ,𝑣2 ) 𝑣3𝑣3−projspan(𝑣1 ,𝑣2 ) 𝑣3
 =

𝑣3−projspan(𝑒1 ,𝑒2 ) 𝑣3𝑣3−projspan(𝑒1 ,𝑒2 ) 𝑣3
 that is a normal vector like 𝑒1 and 𝑒2.

...

Repeat this process. At each intermediate step, you will consider the vector 𝑒 𝑗 =
𝑣 𝑗−projspan(𝑣1 ,...,𝑣 𝑗−1 ) 𝑣 𝑗𝑣 𝑗−projspan(𝑣1 ,...,𝑣 𝑗−1 ) 𝑣 𝑗

 .

However, there is an issue to deal with here. What does projspan(𝑣1 ,...,𝑣 𝑗−1 ) 𝑣 𝑗 even mean in this context? We have so far only
defined the concept of orthogonal projections for the case where the span is 1-dimensional.

Theorem 12.5
Suppose 𝑥 ∈ 𝑉 and 𝑈 is a subspace of 𝑉 . Then, 𝑥 = 𝑦 + 𝑤 for unique 𝑦 ∈ 𝑈 and unique 𝑤 such that ⟨𝑦, 𝑤⟩ = 0. Define
proj𝑈 𝑥 = 𝑦 and, thus, 𝑤 = 𝑥 − proj𝑈 𝑥.

This is just an extension of the definition of orthogonal projection from earlier but it certainly explains the meaning of projecting
onto a subspace.

Theorem 12.6
This is a special case of the theorem above. Suppose that 𝑒1, . . . , 𝑒𝑚 is an orthonormal bases of 𝑈. Then, proj𝑈 𝑥 =

⟨𝑥, 𝑒1⟩𝑒1 + · · · + ⟨𝑥, 𝑒𝑚⟩𝑒𝑚.

Proof: Suppose that 𝑥 = 𝑦 +𝑤 with 𝑦 ∈ 𝑈 and ⟨𝑦, 𝑤⟩ = 0. So, 𝑦 = 𝑐1𝑒1 + · · · + 𝑐𝑚𝑒𝑚. We already know that each 𝑐 𝑗 =
〈
𝑦, 𝑒 𝑗

〉
.

Therefore, if proj𝑈 𝑥 indeed exists, it must be

proj𝑈 𝑥 = ⟨𝑥, 𝑒1⟩𝑒1 + · · · + ⟨𝑥, 𝑒𝑚⟩𝑒𝑚
However, this certainly must exist since 𝑒1, . . . , 𝑒𝑚 does.
Using a simple algebraic calculation (that I have omitted here), you can verify that ⟨𝑥, 𝑒1⟩𝑒1 + · · · + ⟨𝑥, 𝑒𝑚⟩𝑒𝑚 has the desired
property that it is orthogonal to 𝑥 − ⟨𝑥, 𝑒1⟩𝑒1 − · · · − ⟨𝑥, 𝑒𝑚⟩𝑒𝑚.

Note 12.3
This argument shows that if 𝑒1, . . . , 𝑒𝑚 is orthonormal, then

projspan(𝑒1 ,...,𝑒𝑚 ) = projspan(𝑒1 ) +projspan(𝑒2 ) + · · · + projspan(𝑒𝑚 )

We have effectively reduced the issue above to the following: we know that 𝑈 being finite dimensional will imply that it has a
basis, but we don’t have an argument for whether it has an orthonormal basis. For that, we can either appeal to Gram-Schmidt,
which would be circular reasoning, or we need to prove this fact independently. We will just assume for now that this statement
holds (and proofs of it that function without Gram-Schmidt do indeed exist out there).
Then, the definition of 𝑒 𝑗 from earlier can be substituted with

𝑒 𝑗 =
𝑣 𝑗 − projspan(𝑒1 ,...,𝑒 𝑗−1 ) 𝑣 𝑗𝑣 𝑗 − projspan(𝑒1 ,...,𝑒 𝑗−1 ) 𝑣 𝑗

 =
𝑣 𝑗 −

〈
𝑣 𝑗 , 𝑒1

〉
𝑒1 − · · · −

〈
𝑣 𝑗 , 𝑒 𝑗−1

〉
𝑒 𝑗−1𝑣 𝑗 −

〈
𝑣 𝑗 , 𝑒1

〉
𝑒1 − · · · −

〈
𝑣 𝑗 , 𝑒 𝑗−1

〉
𝑒 𝑗−1


Since 𝑣 𝑗 = projspan(𝑒1 ,...,𝑒 𝑗−1 ) 𝑣 𝑗 + (𝑣 𝑗−projspan(𝑒1 ,...,𝑒 𝑗−1 ) 𝑣 𝑗 ), the vector 𝑒 𝑗 (its un-normalized version, for now) is orthogonal
to all vectors in 𝑒1, . . . , 𝑒 𝑗−1. Since all 𝑒𝑖 are normal vectors, this further implies that 𝑒1, . . . , 𝑒 𝑗 is orthonormal as intended.
We will now prove the existence of an orthonormal basis using the Gram-Schmidt method, which is an easier proof than the
ones alluded to above.
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Theorem 12.7
Every finite dimensional inner product space 𝑉 has an orthonormal basis.

Proof: Let 𝑣1, . . . , 𝑣𝑛 be a basis of 𝑉 . Apply the Gram-Schmidt process to obtain an orthonormal list 𝑒1, . . . , 𝑒𝑛 such that
span(𝑒1, . . . , 𝑒𝑛) = span(𝑣1, . . . , 𝑣𝑛) = 𝑉 . Since 𝑒1, . . . , 𝑒𝑛 is a spanning list of length 𝑛 in 𝑉 , it is 𝑛-dimensional and hence a
basis.

Theorem 12.8
Suppose 𝑉 is finite-dimensional and 𝑒1, . . . , 𝑒𝑚 is an orthonormal list in 𝑉 . Then, 𝑒1, . . . , 𝑒𝑚 can be extended to an
orthonormal basis of 𝑉 .

Proof: Extend 𝑒1, . . . , 𝑒𝑚 to a basis 𝑒1, . . . , 𝑒𝑚, 𝑣1, . . . , 𝑣𝑛−𝑚 of 𝑉 . Apply the Gram-Schmidt process on this list to obtain an
orthonormal basis of 𝑉 as desired.

Theorem 12.9
Let 𝑇 ∈ L(𝑉). Suppose [𝑇]𝛽

𝛽
is upper triangular for some basis 𝛽. Then, there exists another basis 𝛼 of 𝑉 such that

[𝑇]𝛼𝛼 is upper triangular too.

Proof: The matrix [𝑇]𝛽
𝛽

being upper triangular implies that span(𝑣1, . . . , 𝑣 𝑗 ) is𝑇-invariant for all 𝑗 ≤ 𝑛 and 𝛽 = 𝑣1, . . . , 𝑣𝑛. Ap-
ply the Gram-Schmidt process to 𝐵 to obtain an orthonormal basis 𝛼 = 𝑒1, . . . , 𝑒𝑛. Since span(𝑒1, . . . , 𝑒 𝑗 ) = span(𝑣1, . . . , 𝑣 𝑗 )
for all 𝑗 ≤ 𝑛 throughout the process, then span(𝑒1, . . . , 𝑒𝑛) is 𝑇-invariant too. Then, [𝑇]𝛼𝛼 is upper-triangular as well.

Theorem 12.10: Schur
If 𝑉 is a finite-dimensional complex inner product space and 𝑇 ∈ L(𝑉), then there exists an orthonormal basis of 𝑉 such
that [𝑇]𝛼𝛼 is upper triangular.

Proof: This is a direct consequence of the previous few theorems, and the upper triangular condition covered in lecture 9.

12.2 Linear Functionals

Definition 12.2: Linear Functional
A linear functional on 𝑉 is a map from 𝑉 to F.

Definition 12.3: Dual Space
The dual space 𝑉∗ = L(𝑉, F) is the set of all linear functionals on 𝑉 .

Theorem 12.11: Riesz-Representation Theorem
Let 𝑉 be a finite-dimensional inner-product space and 𝑉∗ its dual space. If 𝜙 ∈ 𝑉∗, then these exists a unique 𝑢 ∈ 𝑉 such
that 𝜙(𝑣) = ⟨𝑢, 𝑣⟩ for all 𝑣 ∈ 𝑉 .

Thus, if we let 𝜙𝑢 be the functional given by 𝜙𝑢 (𝑣) = ⟨𝑣, 𝑢⟩ for all 𝑣, then 𝑢 ↦→ 𝜙𝑢 defines an anti-isomorphism, i.e., an
isomorphism from 𝑉 onto the dual space 𝑉∗ of 𝑉 .

Definition 12.4: Dual Basis
If 𝑉 is a finite-dimensional vector space and 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉 , then 𝑉∗ has a so-called dual basis to 𝑣1, . . . , 𝑣𝑛.

Proof: Define 𝛿1 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑐1, . . . , 𝛿𝑛 (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛) = 𝑐𝑛 for 𝛿1, . . . , 𝛿𝑛 ∈ 𝑉∗.

• Let’s check that 𝛿1, . . . , 𝛿𝑛 is linearly independent: If 𝑐1𝛿1 + · · · + 𝑐𝑛𝛿𝑛 = 0, then (𝑐1𝛿1 + · · · + 𝑐𝑛𝛿𝑛) (𝑣) = 0 for all 𝑣 ∈ 𝑉 .
However, letting 𝑣 = 𝑣 𝑗 gives us 𝑐 𝑗 = 0, implying that the aforementioned functionals are indeed linearly independent.
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• Let’s check that 𝛿1, . . . , 𝛿𝑛 spans 𝑉∗. Let 𝑣 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛 and 𝜙 ∈ 𝑉∗. Then,

𝜙(𝑣) = 𝜙(𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛)
= 𝑐1𝜙(𝑣1) + · · · + 𝑐𝑛𝜙(𝑣𝑛)
= 𝜙(𝑣1)𝛿1 (𝑐1𝑣1) + · · · + 𝜙(𝑣𝑛)𝛿𝑛 (𝑐𝑛𝑣𝑛)
= 𝜙(𝑣1)𝛿1 (𝑣) + · · · + 𝜙(𝑣𝑛)𝛿𝑛 (𝑣)
= (𝜙(𝑣1)𝛿1 + · · · + 𝜙(𝑣𝑛)𝛿𝑛) (𝑣)

for all 𝑣 ∈ 𝑉 . So, 𝜙 = 𝜙(𝑣1)𝛿1 + · · · + 𝜙(𝑣𝑛)𝛿𝑛.

Theorem 12.12
Since 𝑉 is finite dimensional, then so is 𝑉∗. As they have the same dimension, 𝑉 � 𝑉∗. Similarly, 𝑉∗ � 𝑉∗∗, which
implies that 𝑉 � 𝑉∗∗.

Let’s construct this “natural” (or “canonical”) isomorphism.

Proof: Let 𝑣 ∈ 𝑉 . Define 𝑣 ∈ 𝑉∗∗ such that 𝑣(𝜙) = 𝜙(𝑣) ∈ F for all 𝜙 ∈ 𝑉∗. Thus, 𝑣(𝜙 + 𝜙) = (𝜙 + 𝜙) (𝑣) = 𝜙(𝑣) + 𝜙(𝑣) =
𝑣(𝜙) + 𝑣(𝜙) and 𝑣(𝑐𝜙) = (𝑐𝜙) (𝑣) = 𝑐𝜙(𝑣) = 𝑐𝑣(𝜙).

• Next, we check that the map 𝑣 ↦→ 𝑣 is linear:

ˆ(𝑣 + 𝑤) (𝜙) = 𝜙(𝑣 + 𝑤)
= 𝜙(𝑣) + 𝜙(𝑤)
= 𝑣(𝜙) + �̂�(𝜙)

for all 𝜙. Also,
ˆ(𝑐𝑣) (𝜙) = 𝜙(𝑐𝑣) = 𝑐𝜙(𝑣) = 𝑐𝑣(𝜙)

Since 𝑣 satisfies both additivity and homogeneity, the map ˆ : 𝑉 ↦→ 𝑉∗∗ is indeed linear.

• Now we will show that ˆ is injective. Suppose 𝑣(𝜙) = 0 for all 𝜙. Let 𝑣 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛. Look at 𝑣(𝛿 𝑗 ) = 𝛿 𝑗 (𝑣)
where each 𝛿 𝑗 is defined in the same way as earlier. Therefore, 𝑣(𝛿 𝑗 ) = 0 =⇒ 𝛿 𝑗 (𝑣) = 0 =⇒ 𝑐 𝑗 = 0. Thus, 𝑣(𝜙) = 0
for all 𝜙 implies that 𝑐1 = · · · = 𝑐𝑛 = 0 so 𝑣 = 0. Then, ker(𝑣) = {0} and 𝑣 : 𝑉 ↦→ 𝑉∗∗ is injective.

Based on the grounds of dimensionality, 𝑣 is an isomorphism.

Example 12.2: 6B Exercise 1
For some \ ∈ R, show that (cos \, sin \), (− sin \, cos \) and (cos \, sin \), (sin \,− cos \) are orthonormal bases of R2.
Furthermore, show that any orthonormal basis of R2 has one of these two forms.

• The first part is trivial since the taking the inner product of both vectors for both sets of bases would yield
cos \ sin \ − cos \ sin \ = 0. Moreover, for each vector given above, their norm is cos2 \ + sin2 \ = 1. Thus, they
are indeed orthonormal bases.

• For the second part, let (𝑎, 𝑏) ∈ R2 be a normal vector. Thus, 𝑎2 + 𝑏2 = 1, which indicates that it lies on the unit
circle. Then, [

𝑎

𝑏

]
=

[
cos \
sin \

]
for some unique 0 ≤ \ ≤ 2𝜋. Now suppose (𝑥, 𝑦) ∈ R2 such that it too is a normal vector, but〈[

𝑎

𝑏

]
,

[
𝑥

𝑦

]〉
= 𝑎𝑥 + 𝑏𝑦 = 0

Thus, (𝑥, 𝑦) must also lie on the unit circle and based on the representation of (𝑎, 𝑏) shown earlier, it only has the
two possibilities given in the first part of the question.
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Note 12.4
The matrices representing the two bases above are special:

•
[
cos \ − sin \
sin \ cos \

]
represents a rotation in R2 about the origin, counterclockwise by \ radians.

•
[
cos \ sin \
sin \ − cos \

]
represents a reflection in R2 about the line that has an angle of \

2 with the x-axis.

Thus, the example above essentially tells us that all orthonormal transformations on R2 are either rotations or reflections. This
goes into Lie Group theory, but you can define the orthonormal group 𝑂 (2,R) to be the set of all 2 × 2 orthogonal matrices
and the special orthonormal group 𝑆𝑂 (2,R) to be the set of all rotations on R2 (i.e., all matrices in 𝑂 (2,R) with determinant
1). This can be generalized to higher dimensions as well. This seemingly abstract concept actually has multiple applications in
fields like computer graphics and robotics!
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13 Lecture 13

13.1 Review Problems

We went over a practice midterm and a past midterm in preparation for midterm 1.

Linear Algebra 62



Math 110, Summer 2021 Notes Aryan Jain

14 Lecture 14

14.1 Orthogonal Complements

Definition 14.1: Orthogonal Complements
Let 𝑈 be a subset of the inner product space 𝑉 . The, 𝑈⊥ = {𝑣 ∈ 𝑉 | ⟨𝑣, 𝑢⟩ = 0,∀𝑢 ∈ 𝑈} is the orthogonal complement
of 𝑈.

Properties of the orthogonal complement:

1. 𝑈⊥ is a subspace of 𝑉 .

Proof: By linearity of inner product in the first variable.

2. {0}⊥ = 𝑉

Proof: {0}⊥ = {𝑣 ∈ 𝑉 | ⟨𝑣, 0⟩ = 0} = 𝑉 since ⟨𝑣, 0⟩ for all 𝑣 ∈ 𝑉 .

3. {𝑉}⊥ = {0}

Proof: Let 𝑣 ∈ 𝑉 . Then, ⟨𝑣, 𝑣⟩ ≠ 0 if 𝑣 ≠ 0. Thus, if 𝑣 ≠ 0, then 𝑣 ∉ 𝑉⊥. So, 𝑉⊥ = {0} since 0 ∈ 𝑉⊥ following the
definition of a subspace.

4. If 𝑈 is a subset of 𝑉 , then 𝑈 ∩𝑈⊥ = {0}

Proof: If 𝑢 ∈ 𝑈, then ⟨𝑢, 𝑢⟩ = 0 iff 𝑢 = 0. So, if 𝑢 ∈ 𝑈 and 𝑢 ≠ 0, then 𝑢 ≠ 𝑈⊥.

5. If 𝑈 and 𝑊 are subsets of 𝑉 , then 𝑈 ⊆ 𝑊 =⇒ 𝑊⊥ ⊆ 𝑈⊥

Proof: If 𝑣 ∈ 𝑊⊥, then ⟨𝑣, 𝑤⟩ = 0 for all 𝑤 ∈ 𝑊 . However, if 𝑢 ∈ 𝑈, then 𝑢 ∈ 𝑊 . So, if 𝑣 ∈ 𝑊⊥, then ⟨𝑣, 𝑢⟩ = 0. So,
𝑣 ∈ 𝑈⊥ and 𝑊⊥ ⊆ 𝑈⊥.

Theorem 14.1
Suppose that 𝑈 is a finite-dimensional subspace of 𝑉 (where 𝑉 itself doesn’t need to be finite-dimensional). Then,
𝑉 = 𝑈 ⊕ 𝑈⊥.

Proof: By property 4 given above, 𝑈 ∩𝑈⊥ = {0}. We will show that 𝑉 = 𝑈 +𝑈⊥. Choose any orthonormal basis 𝑒1, . . . , 𝑒𝑚
of 𝑈. Write

𝑣 = ⟨𝑣, 𝑒1⟩𝑒1 + · · · + ⟨𝑣, 𝑒𝑚⟩𝑒𝑚︸                             ︷︷                             ︸
𝑢

+ (𝑣 − ⟨𝑣, 𝑒1⟩𝑒1 − · · · − ⟨𝑣, 𝑒𝑚⟩𝑒𝑚)︸                                      ︷︷                                      ︸
𝑤

Then, 𝑢 ∈ 𝑈 since 𝑒1, . . . , 𝑒𝑚 span 𝑈. Thus, we only need to show that 𝑤 ∈ 𝑈⊥. Look at
〈
𝑤, 𝑒 𝑗

〉
:〈

𝑤, 𝑒 𝑗

〉
=

〈
𝑣 − 𝑢, 𝑒 𝑗

〉
=

〈
𝑣, 𝑒 𝑗

〉
−

〈
𝑢, 𝑒 𝑗

〉
=

〈
𝑣, 𝑒 𝑗

〉
−

〈
𝑣, 𝑒 𝑗

〉
since 𝑒1, . . . , 𝑒𝑚 are orthonormal anyway. This holds for any vector in span(𝑒1, . . . , 𝑒𝑚) so 𝑤 ∈ 𝑈⊥ as intended.

Note 14.1
Note that the above theorem can fail if 𝑈 is not finite-dimensional.
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Theorem 14.2
If 𝑈 is a subset of 𝑉 , then 𝑈 ⊆ (𝑈⊥)⊥.

Proof: If 𝑤 ∈ 𝑈⊥ and 𝑢 ∈ 𝑈, then ⟨𝑢, 𝑤⟩ = 0. However, ⟨𝑤, 𝑢⟩ = ⟨𝑢, 𝑤⟩ = 0 as well. Since 𝑤 ∈ 𝑈⊥ is arbitrary, 𝑢 ∈ (𝑈⊥)⊥.
Thus, 𝑈 ⊆ (𝑈⊥)⊥ as intended.

Theorem 14.3
If 𝑉 is finite-dimensional and 𝑈 is a subspace of 𝑉 , then 𝑈 = (𝑈⊥)⊥.

Proof: If 𝑉 is finite-dimensional, then 𝑉 = 𝑈 ⊕ 𝑈⊥ and 𝑉 = 𝑈⊥ ⊕ (𝑈⊥)⊥. Thus, dim𝑈 = dim𝑉 − dim𝑈⊥ = dim(𝑈⊥)⊥.
Since 𝑈 ⊆ (𝑈⊥)⊥ was just proven, we get that 𝑈 = (𝑈⊥)⊥.

Note 14.2
Note that (𝑈⊥)⊥ ⊆ 𝑈 can actually fail if 𝑉 is infinite-dimensional, which is why the finite-dimensional constraint is
added here separately.

Theorem 14.4
Let 𝑈 be a finite-dimensional subspace of 𝑉 . Then, 𝑉 = 𝑈 ⊕𝑈⊥. So, if 𝑣 ∈ 𝑉 , then 𝑣 = 𝑢 + 𝑤 for a unique 𝑢 ∈ 𝑈 and a
unique 𝑤 ∈ 𝑈⊥. Define proj𝑈 (𝑣) = 𝑢 = ⟨𝑣, 𝑒1⟩𝑒1 + · · · + ⟨𝑣, 𝑒𝑚⟩𝑒𝑚 where 𝑒1, . . . , 𝑒𝑚 is any orthonormal basis of 𝑈.

Note 14.3
Note that this theorem just restates what we already took for granted in our explanation of the Gram-Schmidt process
earlier.

Following the definition of an orthogonal projection, we can now list some its basic properties:

1. 𝑃 = proj𝑈 : 𝑉 ↦→ 𝑈 ⊆ 𝑉 is linear

2. range(𝑃) = 𝑈 and ker(𝑃) = 𝑈⊥

3. 𝑃2 = 𝑃

4. ∥proj𝑈 (𝑣)∥ ≤ ∥𝑣∥ for all 𝑣 ∈ 𝑉

Proof: ∥𝑣∥2 = ∥proj𝑈 (𝑣)∥2 + ∥𝑣 − proj𝑈 (𝑣)∥2 ≥ ∥proj𝑈 (𝑣)∥2 by the Pythagorean theorem

The proof of the remaining properties should be fairly easy and is, therefore, left as an exercise for the reader.

14.2 Least Squares/Minimization

Theorem 14.5
Let𝑈 be a finite dimensional subspace of𝑉 and 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 . Then, ∥𝑣 − proj𝑈 (𝑣)∥2 ≤ ∥𝑣 − 𝑢∥2 for all 𝑢 with equality
if 𝑢 = proj𝑈 (𝑣).

Proof: Observe that

∥𝑣 − 𝑢∥2 = ∥𝑣 − proj𝑈 (𝑣) + proj𝑈 (𝑣) − 𝑢∥2

= ∥𝑣 − proj𝑈 (𝑣)∥2 + ∥proj𝑈 (𝑣) − 𝑢∥2

by the Pythagorean theorem. So, ∥𝑣 − 𝑢∥2 ≥ ∥𝑣 − proj𝑈 (𝑣)∥2 with equality if 𝑢 = proj𝑈 (𝑣).

Let A be an 𝑚 × 𝑛 real valued matrix and 𝑏 ∈ R𝑛. Then, the linear system 𝐴𝑥 = 𝑏 may have no solutions or it can even be
inconsistent. However, we can always find a “least squares solution” that minimizes ∥𝐴𝑥 − 𝑏∥22. First, lets prove a few claims:
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Theorem 14.6
(row space of 𝐴)⊥ = ker(𝐴)

Proof: Let 𝑟1, . . . , 𝑟𝑚 be the rows of 𝐴. Then, 𝐴𝑥 = 0 iff 𝑟𝑖 ·𝑥 = 0 for all 𝑖 ≤ 𝑚. So, row(𝐴) = ker(𝐴)⊥ ⇐⇒ row(𝐴)⊥ = ker(𝐴).

Theorem 14.7
im(𝐴𝑇 ) = col(𝐴𝑇 ) = row(𝐴) = ker(𝐴)⊥.

Theorem 14.8
Let 𝑇 : R𝑛 ↦→ R𝑚 be represented by 𝑇 (𝑥) = 𝐴𝑥 where 𝐴 is an 𝑚 × 𝑛 matrix and R𝑛,R𝑚 are Euclidean inner product
spaces. Then, ker(𝐴) = ker(𝐴𝑇 𝐴).

Proof: The direction ker(𝐴) ⊆ ker(𝐴𝑇 𝐴) is trivially clear since 𝐴𝑥 = 0 =⇒ 𝐴𝑇 𝐴𝑥 = 𝐴𝑇0 = 0. Now, suppose that 𝐴𝑇 𝐴𝑥 = 0.
Then, 𝐴𝑥 ∈ ker(𝐴𝑇 ) and 𝐴𝑥 ∈ im(𝐴) = ker(𝐴𝑇 )⊥. However, R𝑚 = ker(𝐴𝑇 ) ⊕ ker(𝐴𝑇 )⊥ so 𝐴𝑥 = 0 =⇒ 𝑥 ∈ ker(𝐴).

Suppose that 𝑣 minimizes the least squares error, i.e., ∥𝐴𝑣 − 𝑏∥2 ≤ ∥𝐴𝑥 − 𝑏∥2 for all 𝑥 ∈ 𝑉 . Then 𝐴𝑣 = projim(𝐴) 𝑏 ⇐⇒
𝑏 − 𝐴𝑣 ∈ im(𝐴)⊥ = ker(𝐴𝑇 ) = row(𝐴) =⇒ 𝐴𝑇 (𝑏 − 𝐴𝑣) = 0 =⇒ 𝐴𝑇 𝐴𝑣 = 𝐴𝑇𝑏.
In conclusion, a “least squares” solution to 𝐴𝑥 = 𝑏 exists and is an exact (i.e. not approximate) solution to the “normal” equation
given by 𝐴𝑇 𝐴𝑣 = 𝐴𝑇𝑏.

Example 14.1: 6A Exercise 6
Suppose 𝑢, 𝑣 ∈ 𝑉 . Prove that ⟨𝑢, 𝑣⟩ = 0 iff ∥𝑢∥ ≤ ∥𝑢 + 𝑎𝑣∥ for all 𝑎 ∈ F.

Proof: Note that

∥𝑢 + 𝑎𝑣∥2 = ⟨𝑢 + 𝑎𝑣, 𝑢 + 𝑎𝑣⟩
= ∥𝑢∥2 + 𝑎⟨𝑣, 𝑢⟩ + 𝑎⟨𝑢, 𝑣⟩ + |𝑎 |2∥𝑣∥2

If ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩ = 0, then ∥𝑢 + 𝑎𝑣∥2 = ∥𝑢∥2 + |𝑎 |2∥𝑣∥2 ≥ ∥𝑢∥2. Conversely, suppose that ∥𝑢∥2 ≤ ∥𝑢 + 𝑎𝑣∥2 for all
𝑎 ∈ F. Then,

∥𝑢 + 𝑎𝑣∥2 − ∥𝑢∥2 = |𝑎 |2∥𝑣∥2 + 𝑎⟨𝑣, 𝑢⟩ + 𝑎⟨𝑢, 𝑣⟩
≥ 0

If 𝑣 = 0, then ⟨𝑢, 𝑣⟩ = 0 as desired. However, if 𝑣 ≠ 0, then let 𝑎 =
−⟨𝑢,𝑣⟩
∥𝑣 ∥2 to get

|−⟨𝑢, 𝑣⟩|2

∥𝑣∥2
− 2

|⟨𝑢, 𝑣⟩|2

∥𝑣∥2
= − |⟨𝑢, 𝑣⟩|2

∥𝑣∥2
≥ 0 =⇒ ⟨𝑢, 𝑣⟩ = 0

Example 14.2: 6C Exercise 8
Suppose that 𝑉 is finite-dimensional and 𝑃 ∈ L(𝑉) such that 𝑃2 = 𝑃 and ∥𝑃𝑣∥ ≤ ∥𝑣∥ for all 𝑣 ∈ 𝑉 . Prove that there is
a subspace 𝑈 ⊆ 𝑉 such that 𝑃 = 𝑃𝑈 .

Proof: Let 𝑈 = range(𝑃). We claim that 𝑃 = 𝑃𝑈 . Now, 𝑉 = 𝑈 ⊕ 𝑈⊥ = range(𝑃𝑈) ⊕ range(𝑃𝑈)⊥. If 𝑢 ∈ range(𝑃),
i.e., 𝑢 = 𝑃𝑥 for some 𝑥 ∈ 𝑉 , then 𝑃𝑢 = 𝑃2𝑥 = 𝑃𝑥 = 𝑢 and 𝑃𝑈𝑢 = 𝑢. So, 𝑃 and 𝑃𝑈 agree on𝑈 = range(𝑃) and we need to
only prove that ker(𝑃) = ker(𝑃𝑈) = range(𝑃𝑈)⊥ = range(𝑃)⊥. Towards this, let 𝑢 ∈ range(𝑃) and 𝑤 ∈ ker(𝑃). Then,
∥𝑢∥ = ∥𝑃(𝑢 + 𝑎𝑤)∥ ≤ ∥𝑢 + 𝑎𝑤∥2 by the preceding example. Thus, ⟨𝑢, 𝑤⟩ = 0 and ker(𝑃) ⊆ range(𝑃)⊥. However, as
dimker(𝑃) = dim range(𝑃)⊥, we get that ker(𝑃) = range(𝑃)⊥. So, if 𝑣 = 𝑢 + 𝑤, then 𝑃𝑣 = 𝑃𝑢 = 𝑃𝑈𝑢 = 𝑃𝑈𝑣.
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Example 14.3
Let 𝑝 ∈ P3 (R) and 𝑝(0) = 0, 𝑝′ (0) = 0. Our goal is to minimize

∫ 1

0
(2 + 3𝑥 − 𝑝(𝑥))2 d𝑥.

Let 𝑝 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 + 𝑑𝑥3 and 𝑝′ = 𝑏 + 2𝑐𝑥 + 3𝑑𝑥2. Then, 𝑝(0) = 0 =⇒ 𝑎 = 0 and 𝑝′ (0) = 0 =⇒ 𝑏 = 0.
Equivalently, 𝑝 = 𝑐𝑥2 + 𝑑𝑥3, and the basis of this subspace is 𝑥2, 𝑥3. However, we need an orthonormal bases for
𝑈 = span(𝑥2, 𝑥3).

Let the 𝐿2-inner product on this inner product space be ⟨𝑝, 𝑞⟩ =
∫ 1

0
𝑝(𝑥)𝑞(𝑥) d𝑥. Performing Gram-Schmidt,

𝑥2 = (∫ 1

0
𝑥4 d𝑥

) 1
2

=

(
1

5

) 1
2

=
1
√
5

𝑒1 =
𝑥2𝑥2

=
√
5𝑥2

Similarly,

𝑒2 =

𝑥3 −
〈
𝑥3,

√
𝑥2

〉√
5𝑥2𝑥3 − 〈

𝑥3,
√
𝑥2

〉√
5𝑥2


Since, 〈

𝑥3,
√
5𝑥2

〉
=

∫ 1

0

√
5𝑥5 d𝑥

=

√
5

6

𝑒2 =
𝑥3 − 5

6𝑥
2𝑥3 − 5

6𝑥
2
𝑥3 − 5

6
𝑥2

 = (∫ 1

0

(
𝑥3 − 5

6
𝑥2

) (
𝑥3 − 5

6
𝑥2

)
d𝑥

) 1
2

=

(∫ 1

0

(
𝑥6 − 10

6
𝑥4 + 25

36
𝑥4

)
d𝑥

)
=

1

6
√
7

𝑒2 = 6
√
7𝑥3 − 5

√
7𝑥2

Note that proj𝑈 (2 + 3𝑥) minimizes the least-squares error. Thus,

proj𝑈 (2 + 3𝑥) = ⟨2 + 3𝑥, 𝑒1⟩𝑒1 + ⟨2 + 3𝑥, 𝑒2⟩𝑒2

=

(∫ 1

0
(2 + 3𝑥) (

√
5𝑥2) d𝑥

)
(
√
5𝑥2) +

(∫ 1

0
(2 + 3𝑥) (6

√
7𝑥3 − 5

√
7𝑥2) d𝑥

)
(6
√
7𝑥3 − 5

√
7𝑥2)

= −203

10
𝑥3 + 24𝑥2
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15 Lecture 15

15.1 Adjoint Maps

Definition 15.1: Adjoint
Let 𝑇 ∈ L(𝑉,𝑊). The adjoint of 𝑇 is the map 𝑇∗ : 𝑊 ↦→ 𝑉 such that ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, 𝑇∗𝑤⟩ for all 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 .

Proof: We will show that𝑇∗ actually exists and is unique. Let𝑤 ∈ 𝑊 and define 𝜙𝑤 (𝑣) = ⟨𝑇𝑣, 𝑤⟩. Then, 𝜙𝑤 ∈ L(𝑉, F) = 𝑉∗ and
the Riesz Representation Theorem applies to 𝜙𝑤 . Thus, there exists a unique vector in𝑉 , call it𝑇∗𝑤, such that 𝜙𝑤 (𝑣) = ⟨𝑣, 𝑇∗𝑤⟩
for all 𝑣 ∈ 𝑉 . So, ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, 𝑇∗𝑤⟩. Therefore, 𝑇∗ is a well-defined map from 𝑊 to 𝑉 and its uniqueness of 𝑇∗𝑤 guaranteed
by the Riesz Representation Theorem.

Theorem 15.1
𝑇∗ is linear, i.e., 𝑇∗ ∈ L(𝑊,𝑉).

Proof: Pretty straightforward using the properties of inner products. It is left as an exercise for the reader to verify this.

Example 15.1
Let 𝑇 : R3 ↦→ R2 be given by 𝑇 (𝑥1, 𝑥2, 𝑥3) = (𝑥2 + 3𝑥3, 2𝑥1). Find a formula for 𝑇∗. Let (𝑦1, 𝑦2) ∈ R2. Then,

⟨𝑇 (𝑥1, 𝑥2, 𝑥3), (𝑦1, 𝑦2)⟩ = ⟨(𝑥1, 𝑥2, 𝑥3), 𝑇∗ (𝑦1, 𝑦2)⟩
⟨(𝑥2 + 3𝑥3, 2𝑥1), (𝑦1, 𝑦2)⟩ = ⟨(𝑥1, 𝑥2, 𝑥3), 𝑇∗ (𝑦1, 𝑦2)⟩

𝑥2𝑦1 + 3𝑥3𝑦1 + 2𝑥1𝑦2 = ⟨(𝑥1, 𝑥2, 𝑥3), 𝑇∗ (𝑦1, 𝑦2)⟩
⟨(𝑥1, 𝑥2, 𝑥3), (2𝑦2, 𝑦1, 3𝑦1)⟩ = ⟨(𝑥1, 𝑥2, 𝑥3), 𝑇∗ (𝑦1, 𝑦2)⟩

Thus, 𝑇∗ (𝑦1, 𝑦2) = (2𝑦2, 𝑦1, 3𝑦1) works for all (𝑥1, 𝑥2, 𝑥3) ∈ R3 and (𝑦1, 𝑦2) ∈ R2.

Theorem 15.2: Properties of the Adjoint

1. (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗ for all 𝑆, 𝑇 ∈ L(𝑉,𝑊)

2. (_𝑇)∗ = _𝑇∗ for all _ ∈ F and 𝑇 ∈ L(𝑉,𝑊)

3. 𝑇∗∗ = (𝑇∗)∗ = 𝑇 for all 𝑇 ∈ L(𝑉,𝑊)

4. 𝐼∗ = 𝐼 for the identity operator on 𝑉

5. (𝑆𝑇)∗ = 𝑇∗𝑆∗ for all 𝑇 ∈ L(𝑉,𝑊) and 𝑆 ∈ L(𝑊,𝑈)

Proof: Most of these statements are fairly basic but we will prove properties 3 and 5 here.

• Proof of property 3: note that

⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, 𝑇∗𝑤⟩ = ⟨𝑇∗𝑤, 𝑣⟩ = ⟨𝑤, (𝑇∗)∗𝑣⟩ = ⟨(𝑇∗)∗𝑣, 𝑤⟩

This holds for all 𝑣 ∈ 𝑉, 𝑤 ∈ 𝑊 so 𝑇 = (𝑇∗)∗. The uniqueness part is implicit from the Riesz Representation Theorem.

• Proof of property 5: note that

⟨𝑆𝑇𝑣, 𝑢⟩ = ⟨𝑣, (𝑆𝑇)∗𝑢⟩
⟨𝑆𝑇𝑣, 𝑢⟩ = ⟨𝑇𝑣, 𝑆∗𝑢⟩

= ⟨𝑣, 𝑇∗𝑆∗𝑢⟩

Again, since this statement holds for all 𝑣 ∈ 𝑉, 𝑢 ∈ 𝑈, we get that (𝑆𝑇)∗ = 𝑇∗𝑆∗.
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Theorem 15.3
If 𝑇 ∈ L(𝑉,𝑊), then,

1. ker(𝑇∗) = range(𝑇)⊥

2. range(𝑇∗) = ker(𝑇)⊥

3. ker(𝑇) = range(𝑇∗)⊥

4. range(𝑇) = ker(𝑇∗)⊥

Proof: The proofs of all 4 statements:

1. Suppose 𝑇∗𝑤 = 0. Then, ⟨𝑣, 𝑇∗𝑤⟩ = 0 =⇒ ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑤,𝑇𝑣⟩ = 0 =⇒ ⟨𝑤,𝑇𝑣⟩ = 0. Since 𝑣 is arbitrary, we conclude
that 𝑤 ∈ range(𝑇)⊥ =⇒ ker(𝑇∗) ⊆ range(𝑇)⊥. This argument can be reversed to obtain range(𝑇)⊥ ⊆ range(𝑇∗) and
together, ker(𝑇∗) = range(𝑇)⊥.

2. Following proof 1, ker(𝑇∗) = range(𝑇)⊥ =⇒ range(𝑇) = ker(𝑇∗)⊥ =⇒ range(𝑇∗) = ker((𝑇∗)∗)⊥ = ker(𝑇)⊥.

3. Replace 𝑇∗ with 𝑇 in proof 1.

4. Shown as an intermediate step in proof 2.

Definition 15.2: Conjugate Transpose
Let 𝐴 ∈ M𝑚,𝑛 (F). The conjugate transpose of 𝐴 (usually denoted by 𝐴∗) is the 𝑛 × 𝑚 matrix 𝐵 such that 𝐵𝑖, 𝑗 = 𝐴 𝑗 ,𝑖 .

Example 15.2

If 𝐴 =

[
2 + 𝑖 1 − 𝑖

−2 3

]
, then 𝐵 =

[
2 − 𝑖 −2
1 + 𝑖 3

]
Theorem 15.4
If 𝑇 ∈ L(𝑉,𝑊) and 𝑉 has an orthonormal basis 𝑒1, . . . , 𝑒𝑛 while 𝑊 has an orthonormal basis 𝑓1, . . . , 𝑓𝑚, then
M(𝑇∗, ( 𝑓1, . . . , 𝑓𝑚), (𝑒1, . . . , 𝑒𝑛)) is the conjugate transpose of M(𝑇, (𝑒1, . . . , 𝑒𝑛), ( 𝑓1, . . . , 𝑓𝑚)).

Proof: Note that 𝑇∗ 𝑓 𝑗 = ⟨𝑇∗ 𝑓 𝑗 , 𝑒1⟩𝑒1 + · · · + ⟨𝑇∗ 𝑓 𝑗 , 𝑒𝑛⟩𝑒𝑛. So, the 𝑗 th column of M(𝑇∗) is
⟨𝑇∗ 𝑓 𝑗 , 𝑒1⟩

...

⟨𝑇∗ 𝑓 𝑗 , 𝑒𝑛⟩


Similarly, since 𝑇𝑒 𝑗 = ⟨𝑇𝑒 𝑗 , 𝑓1⟩ 𝑓1 + · · · + ⟨𝑇𝑒 𝑗 , 𝑓𝑚⟩ 𝑓𝑚, the 𝑗 th column of M(𝑇) is

⟨𝑇𝑒 𝑗 , 𝑓1⟩
...

⟨𝑇𝑒 𝑗 , 𝑓𝑚⟩


The (𝑖, 𝑗)th entry of M(𝑇∗) is ⟨𝑇∗ 𝑓 𝑗 , 𝑒𝑖⟩ and the ( 𝑗 , 𝑖)th entry of M(𝑇) is ⟨𝑇𝑒𝑖 , 𝑓 𝑗⟩. Since ⟨𝑇𝑒𝑖 , 𝑓 𝑗⟩ = ⟨𝑒𝑖 , 𝑇∗ 𝑓 𝑗⟩ = ⟨𝑇∗ 𝑓 𝑗 , 𝑒𝑖⟩
for any two sets of bases, M(𝑇) and M(𝑇∗) are indeed conjugate transposes of each other.

Definition 15.3: Self-Adjoint
If 𝑉 is a finite-dimensional inner product space and 𝑇 ∈ L(𝑉), then 𝑇 is self-adjoint iff 𝑇 = 𝑇∗, i.e., ⟨𝑇𝑣, 𝑤⟩ = ⟨𝑣, 𝑇𝑤⟩
for all 𝑣, 𝑤 ∈ 𝑉 .
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Note 15.1
If 𝑇 is self-adjoint and 𝛽 = 𝑒1, . . . , 𝑒𝑛 is an orthonormal basis of 𝑉 , then [𝑇∗]𝛽

𝛽
= ( [𝑇]𝛽

𝛽
)∗.

Theorem 15.5
If 𝑇 is self-adjoint, then all of its eigenvalues are real. This holds for 𝑇 defined over both real and complex vector spaces.

Proof: Let 𝑣 be a _-eigenvector of 𝑇 and 𝑣 ≠ 0 (by definition). Then,

𝑇𝑣 = _𝑣

⟨𝑇𝑣, 𝑣⟩ = ⟨_𝑣, 𝑣⟩
= _∥𝑣∥2

⟨𝑣, 𝑇∗𝑣⟩ = ⟨𝑣, 𝑇𝑣⟩
= ⟨𝑣, _𝑣⟩
= _ ∥𝑣∥2

Since 𝑣 ≠ 0, we get that _ = _ which implies that _ is real.

Theorem 15.6
Let 𝑉 is a complex inner product space and 𝑇 ∈ L(𝑉). If ⟨𝑇𝑣, 𝑣⟩ = 0 for all 𝑣 ∈ 𝑉 , then 𝑇 = 0.

Proof: Note that

⟨𝑇𝑢, 𝑤⟩ = ⟨𝑇 (𝑢 + 𝑤), 𝑢 + 𝑤⟩ − ⟨𝑇 (𝑢 − 𝑤), 𝑢 − 𝑤⟩
4

+ ⟨𝑇 (𝑢 + 𝑖𝑤), 𝑢 + 𝑖𝑤⟩ − ⟨𝑇 (𝑢 − 𝑖𝑤), 𝑢 − 𝑖𝑤⟩
4

𝑖

Since ⟨𝑇𝑣, 𝑣⟩ = 0, it follows that ⟨𝑇𝑢, 𝑤⟩ = 0 for all 𝑢, 𝑤 ∈ 𝑉 . Thus, ⟨𝑇𝑢, 𝑇𝑢⟩ = 0 =⇒ 𝑇𝑢 = 0 =⇒ 𝑇 = 0 since this holds for
any arbitrary 𝑢.

Note 15.2
If 𝑉 is a real inner product space instead, this result can fail. Consider 𝑉 = R2 with the normal dot product as its inner
product. Then, the counterclockwise rotation by 𝜋

2 will not work.

Theorem 15.7
If 𝑉 is a complex inner product space and 𝑇 ∈ L(𝑉), then 𝑇 = 𝑇∗ iff ⟨𝑇𝑣, 𝑣⟩ ∈ R for all 𝑣 ∈ 𝑉 .

Proof: For some 𝑣 ∈ 𝑉 , observe that ⟨𝑇𝑣, 𝑣⟩ − ⟨𝑇𝑣, 𝑣⟩ = ⟨𝑇𝑣, 𝑣⟩ − ⟨𝑣, 𝑇𝑣⟩ = ⟨𝑇𝑣, 𝑣⟩ − ⟨𝑇∗𝑣, 𝑣⟩ = ⟨(𝑇 − 𝑇∗)𝑣, 𝑣⟩. If ⟨𝑇𝑣, 𝑣⟩ ∈ R
for all 𝑣 ∈ 𝑉 , then ⟨𝑇𝑣, 𝑣⟩ − ⟨𝑇𝑣, 𝑣⟩ = 0 = ⟨(𝑇 − 𝑇∗)𝑣, 𝑣⟩ for all 𝑣 ∈ 𝑉 . By the previous theorem, 𝑇 − 𝑇∗ = 0 =⇒ 𝑇 = 𝑇∗.
Conversely, 𝑇 = 𝑇∗ =⇒ ⟨𝑇𝑣, 𝑣⟩ = ⟨𝑣, 𝑇∗𝑣⟩ = ⟨𝑣, 𝑇𝑣⟩ = ⟨𝑇𝑣, 𝑣⟩. So, ⟨𝑇𝑣, 𝑣⟩ is real.

Note 15.3
This result will fail for real inner product spaces too. As a counterexample again, consider the counterclockwise rotation
by 𝜋

2 . In fact, you can consider any real operator that is not self-adjoint.

Theorem 15.8
If 𝑉 is an inner product space over F = R or F = C and 𝑇 = 𝑇∗, then ⟨𝑇𝑣, 𝑣⟩ = 0 for all 𝑣 ∈ 𝑉 implies that 𝑇 = 0.

Proof: Essentially the same proof as that of theorem 15.6.
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Note 15.4
This result just confirms the two counterexamples above since there is no non-zero operator on a real product space that
satisfies ⟨𝑇𝑣, 𝑣⟩ = 0 for all 𝑣 ∈ 𝑉 and is self-adjoint.

Definition 15.4: Normal
𝑇 ∈ L(𝑉) is normal iff 𝑇∗𝑇 = 𝑇𝑇∗.

Example 15.3
Let 𝑇 : R2 ↦→ R2 be such that 𝑇 (𝑐1𝑒1 + 𝑐2𝑒2) = 𝑐2𝑒1. Then, 𝑇∗ : R2 ↦→ R2 is given by 𝑇∗ (𝑐1𝑒1 + 𝑐2𝑒2) = 𝑐1𝑒2. Note
that if 𝑒 = 𝑒1, 𝑒2 is the standard basis, then

[𝑇]𝑒𝑒 =
[
0 1
0 0

]
[𝑇∗]𝑒𝑒 =

[
0 0
1 0

]
Since 𝑇∗𝑇 (𝑒1) = 0 ≠ 𝑒1 = 𝑇𝑇∗ (𝑒1), this linear map is not normal.

Example 15.4

Let 𝑇 : R2 ↦→ R2 be such that [𝑇]𝑒𝑒 =
[
2 −3
3 2

]
. Then, 𝑇 is normal but not self-adjoint.

Note 15.5
Following the example above, all self-adjoint operators are normal but not all normal operators are self-adjoint.

Theorem 15.9
𝑇 is normal iff ∥𝑇𝑣∥ = ∥𝑇∗𝑣∥ for all 𝑣 ∈ 𝑉 .

Proof: If 𝑇 is normal, then

𝑇𝑇∗ = 𝑇∗𝑇 ⇐⇒ 𝑇𝑇∗ − 𝑇∗𝑇 = 0

⇐⇒ ⟨(𝑇𝑇∗ − 𝑇∗𝑇)𝑣, 𝑣⟩ = 0∀𝑣 ∈ 𝑉

⇐⇒ ⟨𝑇𝑇∗𝑣, 𝑣⟩ = ⟨𝑇∗𝑇𝑣, 𝑣⟩ ∀𝑣 ∈ 𝑉

⇐⇒ ⟨𝑇∗𝑣, 𝑇∗𝑣⟩ = ⟨𝑇𝑣, 𝑇𝑣⟩ ∀𝑣 ∈ 𝑉

⇐⇒ ∥𝑇∗𝑣∥2 = ∥𝑇𝑣∥2 ∀𝑣 ∈ 𝑉

The second line follows since 𝑇𝑇∗ − 𝑇∗𝑇 is self-adjoint.

Theorem 15.10
Let 𝑇 be normal. If 𝑣 ∈ 𝑉 is a _-eigenvector of 𝑇 , then 𝑣 is a _-eigenvector of 𝑇∗.

Proof: If 𝑇 is normal, then 𝑇 − _𝐼 is normal. Then, the theorem above implies ∥(𝑇 − _𝐼)𝑣∥ = 0 =⇒ ∥(𝑇 − _𝐼)∗𝑣∥ = 0 =⇒
∥(𝑇∗ − _ 𝐼)𝑣∥ = 0 =⇒ (𝑇∗ − _ 𝐼) = 0. Thus, 𝑣 is a _-eigenvector of 𝑇∗.

Theorem 15.11
If 𝑇 is normal, then the eigenvectors of 𝑇 corresponding to distinct eigenvalues are orthogonal.
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Proof: Suppose that 𝑇𝑣1 = _1𝑣1 and 𝑇𝑣2 = _2𝑣2 for 𝑣1, 𝑣2 ≠ 0 and _1 ≠ _2. Then, 𝑇 being normal implies that 𝑇∗𝑣2 = _2 𝑣2.
Thus,

0 = ⟨𝑇𝑣1, 𝑣2⟩ − ⟨𝑣1, 𝑇∗𝑣2⟩
= ⟨_1𝑣1, 𝑣2⟩ − ⟨𝑣1, _2 𝑣2⟩
= (_1 − _2)⟨𝑣1, 𝑣2⟩

Since the eigenvalues are distinct, ⟨𝑣1, 𝑣2⟩ = 0, making the eigenvectors orthogonal. This can be generalized to vector spaces
with dimensions greater than 2.

Example 15.5: 7A Exercise 14
Let 𝑇 be normal, ∥𝑣∥ = ∥𝑤∥ = 2, 𝑇𝑣 = 3𝑣 and 𝑇𝑤 = 4𝑤. Prove that ∥𝑇 (𝑣 + 𝑤)∥ = 10.

Proof: We have ⟨𝑣, 𝑤⟩ = 0 since 𝑣 and 𝑤 are eigenvectors for distinct eigenvalues of the normal operator 𝑇 . So,

∥𝑇 (𝑣 + 𝑤)∥2 = ⟨𝑇 (𝑣 + 𝑤), 𝑇 (𝑣 + 𝑤)⟩
= ∥𝑇𝑣∥2 + ⟨𝑇𝑤,𝑇𝑣⟩ + ⟨𝑇𝑣, 𝑇𝑤⟩ + ∥𝑇𝑤∥2

= ∥3𝑣∥2 + ⟨4𝑤, 3𝑣⟩ + ⟨3𝑣, 4𝑤⟩ + ∥4𝑤∥2

= |3|2∥𝑣∥2 + 12⟨𝑤, 𝑣⟩ + 12⟨𝑣, 𝑤⟩ + |4|2⟨𝑤⟩2

= 9 ∗ 4 + 12 ∗ 0 + 12 ∗ 0 + 16 ∗ 4
= 100

Thus, ∥𝑇 (𝑣 + 𝑤)∥ = 10 as needed.

Example 15.6: 7A Exercise 19
Let 𝑇 ∈ L(C3) be normal and 𝑇 (1, 1, 1) = (2, 2, 2). Suppose (𝑧1, 𝑧2, 𝑧3) ∈ ker(𝑇). Prove that 𝑧1 + 𝑧2 + 𝑧3 = 0.

Proof: If 𝑇 is normal, then ker(𝑇∗) = ker(𝑇) since ∥𝑇𝑣∥ = 0 =⇒ 𝑇𝑣 = 0 and ∥𝑇𝑣∥ = ∥𝑇∗𝑣∥ =⇒ 𝑇∗𝑣 = 0.
Then, (𝑧1, 𝑧2, 𝑧3) ∈ ker(𝑇∗) = range(𝑇)⊥. However, (1, 1, 1) ∈ range(𝑇) since 𝑇 (0.5, 0.5, 0.5) = (1, 1, 1). Then,
(𝑧1, 𝑧2, 𝑧3) · (1, 1, 1) = 0 =⇒ 𝑧1 + 𝑧2 + 𝑧3 = 0.
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16 Lecture 16

16.1 Spectral Theorem

Theorem 16.1: Complex Spectral Theorem
If 𝑉 is a finite-dimensional complex inner product space and 𝑇 ∈ L(𝑉), then the following are equivalent

1. 𝑇 is normal

2. 𝑉 has an orthonormal basis consisting of the eigenvalues of 𝑇

3. 𝑇 has a diagonal matrix with respect to some orthonormal basis of 𝑉

Proof: We will prove directions 1 =⇒ 3, 3 =⇒ 1 and 2 ⇐⇒ 3.

• statement 3 =⇒ statement 1
Suppose 𝛽 = 𝑒1, . . . , 𝑒𝑛 is an orthonormal basis of 𝑉 and

[𝑇]𝛽
𝛽
=


_1

. . .

_𝑛


is diagonal. Since 𝛽 is orthonormal,

[𝑇∗]𝛽
𝛽
= ( [𝑇]𝛽

𝛽
)∗ =


_1

. . .

_𝑛


So,

[𝑇∗𝑇]𝛽
𝛽
= [𝑇∗]𝛽

𝛽
[𝑇]𝛽

𝛽
=


|_1 |2

. . .

|_𝑛 |2

 = [𝑇]𝛽
𝛽
[𝑇∗]𝛽

𝛽
= [𝑇𝑇∗]𝛽

𝛽

which implies that 𝑇∗𝑇 = 𝑇𝑇∗, i.e., 𝑇 is normal.

• statement 1 =⇒ statement 3
Suppose that 𝑇 is normal. Since 𝑉 is complex, by Schur’s Theorem, there is an orthonormal basis 𝛽 = 𝑒1, . . . , 𝑒𝑛 of 𝑉
with respect to which 𝑇 has an upper triangular matrix. Then,

[𝑇]𝛽
𝛽
=


𝑎11 𝑎12 . . . 𝑎1𝑛

𝑎22 . . . 𝑎2𝑛
. . .

...

𝑎𝑛𝑛


We show that [𝑇]𝛽

𝛽
is actually diagonal as well. From the matrix above, note that

𝑇 (𝑒1) = 𝑎1𝑒1

∥𝑇 (𝑒1)∥2 = |𝑎11 |2

By the Pythagorean theorem,

𝑇∗ (𝑒1) = 𝑎11 𝑒1 + 𝑎12 𝑒2 + · · · + 𝑎1𝑛 𝑒𝑛

∥𝑇∗ (𝑒1)∥2 = |𝑎11 |2 + |𝑎12 |2 + · · · + |𝑎1𝑛 |2
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However, since𝑇 is normal, ∥𝑇 (𝑒1)∥2 = ∥𝑇∗ (𝑒1)∥2 =⇒ |𝑎11 |2 = |𝑎11 |2+ |𝑎12 |2+· · ·+ |𝑎1𝑛 |2 =⇒ 𝑎12 = · · · = 𝑎1𝑛 = 0.
So,

𝑇 (𝑒2) = 0𝑒1 + 𝑎22𝑒2 = 𝑎22𝑒2 =⇒ ∥𝑇 (𝑒2)∥2 = |𝑎22 |2

while
𝑇∗ (𝑒2) = 𝑎22 𝑒2 + 𝑎23 𝑒3 + · · · + 𝑎2𝑛 𝑒𝑛

Again, due to 𝑇 being normal, ∥𝑇 (𝑒2)∥2 = |𝑎22 |2 = |𝑎22 |2 + |𝑎23 |2 + · · · + |𝑎2𝑛 |2 = ∥𝑇∗ (𝑒2)∥2 =⇒ 𝑎23 = · · · = 𝑎2𝑛 = 0.
Continuing this process 𝑛 times, note that all of the non-diagonal elements of [𝑇]𝛽

𝛽
will just reduce to a 0.

• statement 2 ⇐⇒ statement 3
This follows immediately from the fact that [𝑇]𝛽

𝛽
is diagonal iff 𝛽 is a basis of 𝑉 consisting of the eigenvectors of 𝑇 .

Now, we want to show that if 𝑉 is a finite-dimensional real inner product space and 𝑇 ∈ L(𝑉) is self-adjoint, then 𝑇 has a real
eigenvalue, i.e., there exists some _ ∈ R, 𝑣 ∈ 𝑉, 𝑣 ≠ 0 with 𝑇𝑣 = _𝑣. First, we will define complexification.

Definition 16.1: Complexification
Let 𝑉 be a real vector space. We define 𝑉C to be the complexification of 𝑉 . That is, 𝑉C will be a complex vector space.

The underlying set of 𝑉C is 𝑉 × 𝑉 = {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉} and we write (𝑢, 𝑣) ∈ 𝑉C as 𝑢 + 𝑖𝑣. Then, addition in 𝑉C can simply be
defined as

(𝑢1 + 𝑖𝑣1) + (𝑢2 + 𝑖𝑣2) = (𝑢1 + 𝑢2) + 𝑖(𝑣1 + 𝑣2)

for 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ 𝑉 and complex scalar multiplication can be defined as

(𝑎 + 𝑏𝑖) (𝑢 + 𝑖𝑣) = (𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢)

for 𝑎, 𝑏 ∈ R and 𝑢, 𝑣 ∈ 𝑉 . It is easy to check that

• 𝑉C is a complex vector space

• If 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉 (as a real vector space), then 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉C (as a complex vector space)

• If 𝑉 = R𝑛, then 𝑉C = C𝑛

If 𝑉 is a real inner product space with inner product ⟨·, ·⟩, then 𝑉C is a complex inner product space with inner product

⟨𝑢1 + 𝑖𝑣1, 𝑢2 + 𝑖𝑣2⟩ = ⟨𝑢1, 𝑢2⟩ + 𝑖⟨𝑣1, 𝑢2⟩ − 𝑖⟨𝑢1, 𝑣2⟩ + ⟨𝑣1, 𝑣2⟩

Note that

⟨𝑢 + 𝑖𝑣, 𝑢 + 𝑖𝑣⟩ = ⟨𝑢, 𝑢⟩ + 𝑖⟨𝑣, 𝑢⟩ − 𝑖⟨𝑢, 𝑣⟩ + ⟨𝑣, 𝑣⟩
= ∥𝑢∥2 + ∥𝑣∥2

≥ 0

as expected from the notion of a norm.

Definition 16.2: Operator Complexification
If 𝑇 ∈ L(𝑉) and 𝑉 is a real vector space, then 𝑇C (𝑢 + 𝑖𝑣) = 𝑇𝑢 + 𝑖𝑇𝑣 where 𝑇C ∈ L(𝑉C).

Theorem 16.2
If 𝑇 is self-adjoint for ⟨·, ·⟩ on 𝑉 , then 𝑇C is self-adjoint for ⟨·, ·⟩ on 𝑉C.

Proof: This proof is left as an exercise for the reader.
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Theorem 16.3
Let𝑉 be a finite-dimensional real inner product space with𝑇 ∈ L(𝑉) self-adjoint. Then, there is a _ ∈ R and 𝑣 ∈ 𝑉, 𝑣 ≠ 0
such that 𝑇𝑣 = _𝑣.

Proof: Since 𝑉C is complex, 𝑇C has a at least one eigenvalue _ ∈ C and associated eigenvector 𝑤 ∈ 𝑉C. Moreover, 𝑇C is
self-adjoint so _ ∈ R. If 𝑤 = 𝑢 + 𝑖𝑣 for 𝑢, 𝑣 ∈ 𝑉 , then 𝑇C (𝑤) = _𝑤 =⇒ 𝑇𝑢 + 𝑖𝑇𝑣 = _𝑢 + 𝑖_𝑣 =⇒ 𝑇𝑢 = _𝑢 and 𝑇𝑣 = _𝑣.
Therefore, at least one of 𝑢, 𝑣 is nonzero since 𝑤 is nonzero, so _ has a valid eigenvector associated with it.

Theorem 16.4
Let 𝑉 be an inner product space and 𝑇 ∈ L(𝑉). If 𝑈 is a 𝑇-invariant subspace of 𝑉 , then 𝑈⊥ is a 𝑇∗-invariant subspace
of 𝑉 .

Proof: Suppose 𝑤 ∈ 𝑈⊥ and 𝑢 ∈ 𝑈. Then, 𝑇𝑢 ∈ 𝑈 and ⟨𝑇𝑢, 𝑤⟩ = 0 =⇒ ⟨𝑢, 𝑇∗𝑤⟩ = 0. So, ⟨𝑇∗𝑤, 𝑢⟩ = 0. Since 𝑢 ∈ 𝑈 was
arbitrary, 𝑇∗𝑤 ∈ 𝑈⊥. However, 𝑤 ∈ 𝑈⊥ was also arbitrary so 𝑈⊥ is 𝑇∗-invariant.

Theorem 16.5
Let 𝑉 be an inner product space with 𝑇 ∈ L(𝑉) self-adjoint. If 𝑈 is a 𝑇-invariant subspace of 𝑉 , then 𝑈⊥ is also
𝑇-invariant. Also, 𝑇 |𝑈 ∈ L(𝑈) is self-adjoint, as is 𝑇 |𝑈⊥ ∈ L(𝑈⊥).

Proof: 𝑈⊥ being 𝑇-invariant immediately follows from the theorem above. If 𝑢, 𝑤 ∈ 𝑈, then ⟨𝑇 |𝑈𝑢, 𝑤⟩ = ⟨𝑇𝑢, 𝑤⟩ = ⟨𝑢, 𝑇𝑤⟩ =
⟨𝑢, 𝑇 |𝑈𝑤⟩. Thus, 𝑇 |𝑈 is self-adjoint. We can show that 𝑇 |𝑈⊥ is self-adjoint using a very similar calculation.

Theorem 16.6: Real Spectral Theorem
Let 𝑉 be a finite-dimensional real inner product space with 𝑇 ∈ L(𝑉). Then, 𝑇 is self-adjoint iff 𝑇 has a diagonal matrix
(with real entries) with respect to some orthonormal basis of 𝑉 .

Proof: We will prove both directions

• Let’s proceed by induction for the forward direction. The base case dim𝑉 = 1 is trivial.
Suppose dim𝑉 = 𝑛. Then, 𝑇 being self-adjoint implies that there is a _1 ∈ R, 𝑣1 ∈ 𝑉, 𝑣 ≠ 0 with 𝑇𝑣1 = _1𝑣1. WLOG, let
∥𝑣1∥ = 1. Note that 𝑇 |𝑈 and 𝑇 |𝑈⊥ are self-adjoint operators on spaces of dimension ≤ 𝑛, following the previous theorem.
So, the induction hypothesis applies here and 𝑇 |𝑈⊥ has a diagonal matrix with respect to some orthonormal basis 𝛼 of
𝑈⊥ = span(𝑣1)⊥. Let 𝛽 be a basis consisting of 𝑣1 and the vectors in 𝛼. Then, 𝛽 is orthonormal and [𝑇]𝛽

𝛽
has the form

[𝑇]𝛽
𝛽
=


_1 0 0 0

0
...

0

[
𝑇 |span(𝑣1 )⊥

] 𝛼
𝛼


Since the lower right block matrix above is also diagonal, the matrix representation of 𝑇 is diagonal with respect to 𝛽.

• Suppose that 𝛽 = 𝑒1, . . . , 𝑒𝑛 is the orthonormal basis of 𝑉 mentioned above and [𝑇]𝛽
𝛽

is diagonal with real entries. Then,

( [𝑇]𝛽
𝛽
)∗ =


_1

. . .

_𝑛

 =


_1

. . .

_𝑛

 = [𝑇]𝛽
𝛽

since all _ 𝑗 ∈ R. Therefore, [𝑇]𝛽
𝛽
= [𝑇∗]𝛽

𝛽
=⇒ 𝑇 = 𝑇∗, i.e., 𝑇 is self-adjoint.

Linear Algebra 74



Math 110, Summer 2021 Notes Aryan Jain

Example 16.1: 7B Exercise 1
True of False: there exists some 𝑇 ∈ L(R3) such that 𝑇 is not self-adjoint (with respect to the usual inner product) and
there is a basis of R3 consisting of the eigenvectors of 𝑇 .

Answer: True — Let 𝑇 : R3 ↦→ R3 be given by

[𝑇]𝑒𝑒 =

1 1 0
0 2 0
0 0 3


Then, 𝑇 has three distinct eigenvalues, namely 1, 2, and 3. So, R3 has a basis consisting of the eigenvectors of 𝑇 .
However,

[𝑇∗]𝑒𝑒 = ( [𝑇]𝑒𝑒)∗ =

1 0 0
1 2 0
0 0 3

 ≠ [𝑇]𝑒𝑒

Thus, 𝑇∗ ≠ 𝑇 , i.e., 𝑇 is not self-adjoint.

Example 16.2: 7B Exercise 2
Let 𝑇 be self-adjoint on a finite-dimensional inner product space and that 2 and 3 are the only eigenvalues of 𝑇 . Prove
that 𝑇2 − 5𝑇 + 6𝐼 = 0.

Proof: By the (real/complex) spectral theorem, there is a basis 𝑣1, . . . , 𝑣𝑘 of 2-eigenvectors of𝑇 and a basis 𝑣𝑘+1, . . . , 𝑣𝑛
of 3-eigenvectors of 𝑇 such that 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉 . Write 𝑣 = 𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛. Then,

(𝑇2 − 5𝑇 + 6𝐼) (𝑣) = (𝑇 − 3𝐼) (𝑇 − 2𝐼) (𝑣)
= (𝑇 − 3𝐼) (𝑇 − 2𝐼) (𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛)
= (𝑇 − 3𝐼) (𝑐𝑘+1𝑣𝑘+1 + · · · + 𝑐𝑛𝑣𝑛)

since (𝑇 − 2𝐼) (𝑣 𝑗 ) = 0 for 1 ≤ 𝑗 ≤ 𝑘 and (𝑇 − 2𝐼) (𝑣 𝑗 ) = 3𝑣 𝑗 − 2𝑣 𝑗 = 𝑣 𝑗 for 𝑘 + 1 ≤ 𝑗 ≤ 𝑛. Also,

(𝑇 − 3𝐼) (𝑐𝑘+1𝑣𝑘+1 + · · · + 𝑐𝑛𝑣𝑛) = 0

(𝑇2 − 5𝑇 + 6𝐼) (𝑣) = 0

since (𝑇 − 3𝐼) (𝑣 𝑗 ) = 0 for 𝑘 + 1 ≤ 𝑗 ≤ 𝑛. The last equality holds for all 𝑣 ∈ 𝑉 so we indeed have that 𝑇2 − 5𝑇 + 6𝐼 = 0.

Example 16.3: 7B Exercise 3
Given an example of a 𝑇 ∈ L(C3) such that 2 and 3 are the only eigenvalues of 𝑇 and 𝑇2 − 5𝑇 + 6𝐼 ≠ 0. Choose a
non-diagonalizable operator on C3, like

[𝑇]𝑒𝑒 =

2 1 0
0 2 0
0 0 3


Then, [

𝑇2 − 5𝑇 + 6𝐼
]𝑒
𝑒
=

[
𝑇2

]𝑒
𝑒
− 5[𝑇]𝑒𝑒 + 6𝐼

=


4 4 0
0 4 0
0 0 4

 −

10 5 0
0 10 0
0 0 15

 +

6 0 0
0 6 0
0 0 6


=


0 −1 0
0 0 0
0 0 0


Clearly, 𝑇2 − 5𝑇 + 6𝐼 ≠ 0.
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Example 16.4: 7B Exercise 11
Prove or give a counterexample: every self-adjoint operator on 𝑉 has a cube root.

Proof: If 𝑇 is self-adjoint, then there is an orthonormal basis 𝛽 of 𝑉 such that

[𝑇]𝛽
𝛽
=


_1

. . .

_𝑛


is diagonal with _1, . . . , _𝑛 ∈ R. Consider 𝑆 ∈ L(𝑉) such that

[𝑆]𝛽
𝛽
=


3
√
_1

. . .
3
√
_𝑛


Then,

[
𝑆3

]𝛽
𝛽
= ( [𝑆]𝛽

𝛽
)3 = [𝑇]𝛽

𝛽
. Thus, 𝑆3 = 𝑇 and 𝑆 is the desired cube root of 𝑇 .

Example 16.5: 7B Exercise 14
Suppose that 𝑈 is a finite-dimensional real vector space and 𝑇 ∈ L(𝑈). Prove that 𝑈 has a basis consisting of the
eigenvectors of 𝑇 iff there is an inner product on 𝑈 that makes 𝑇 into a self-adjoint operator.

Proof: We will prove both directions:

• If there is an inner product that makes 𝑇 self adjoint, then 𝑈 has a basis consisting on the eigenvectors of 𝑇 . This
just follows from the real spectral theorem.

• On the other hand, suppose 𝑈 has a basis consisting of the eigenvalues of 𝑇 , given by 𝑣1, . . . , 𝑣𝑛. Define
⟨𝑐1𝑣1 + · · · + 𝑐𝑛𝑣𝑛, 𝑑1𝑣1 + · · · + 𝑑𝑛𝑣𝑛⟩ = 𝑐1𝑑1 + · · · + 𝑐𝑛𝑑𝑛. According to this inner product, 𝑣1, . . . , 𝑣𝑛 has to be
an orthonormal basis of 𝑉 . By the real spectral theorem, 𝑇 is self-adjoint for this inner product.
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17 Lecture 17

17.1 Positive Operators

Definition 17.1: Positive
The operator 𝑇 ∈ L(𝑉) is positive if 𝑇 is self-adjoint and ⟨𝑇𝑣, 𝑣⟩ ≥ 0 for all 𝑣 ∈ 𝑉 .

Example 17.1
If 𝑈 is a subspace of 𝑉 and 𝑇 = 𝑃𝑈 = proj𝑈 is the orthogonal projection onto 𝑈, then 𝑃𝑈 is positive.

Proof: Orthogonally decompose 𝑣, 𝑤 ∈ 𝑉 as 𝑣 = 𝑃𝑈𝑣 + (𝑣 − 𝑃𝑈𝑣) and 𝑤 = 𝑃𝑈𝑤 + (𝑤 − 𝑃𝑈𝑤). Then,

⟨𝑃𝑈𝑣, 𝑤⟩ = ⟨𝑃𝑈𝑣, 𝑃𝑈𝑤 + (𝑤 − 𝑃𝑈𝑤)⟩ = ⟨𝑃𝑈𝑣, 𝑃𝑈𝑤⟩ = ⟨𝑃𝑈𝑣 + (𝑣 − 𝑃𝑈𝑣), 𝑃𝑈𝑤⟩ = ⟨𝑣, 𝑃𝑈𝑤⟩

for all 𝑣, 𝑤 ∈ 𝑉 . So, 𝑃∗
𝑈
= 𝑃𝑈 , i.e., the orthogonal projection operator is self adjoint. Also,

⟨𝑃𝑈𝑣, 𝑣⟩ = ⟨𝑃2
𝑈𝑣, 𝑣⟩ = ⟨𝑃𝑈𝑣, 𝑃

∗
𝑈𝑣⟩ = ⟨𝑃𝑈𝑣, 𝑃𝑈𝑣⟩ = ∥𝑃𝑈𝑣∥2 ≥ 0

for all 𝑣 ∈ 𝑉 so 𝑃𝑈 is positive as well.

Theorem 17.1
𝑇 is positive iff 𝑇 is self-adjoint and all eigenvalues of 𝑇 are non-negative.

Proof: We will prove both directions:

• If 𝑇 is positive, then it is self-adjoint by definition. Suppose that 𝑇𝑣 = _𝑣 for 𝑣 ≠ 0. Then, ⟨𝑇𝑣, 𝑣⟩ ≥ 0 =⇒ ⟨_𝑣, 𝑣⟩ =
_∥𝑣∥2 ≥ 0. Since 𝑣 ≠ 0, we get that _ ≥ 0 instead.

• Conversely, assume that 𝑇 = 𝑇∗ and all eigenvalues of 𝑇 are nonnegative. We need to show that ⟨𝑇𝑣, 𝑣⟩ ≥ 0 for all 𝑣 ∈ 𝑉 .
By the Spectral Theorem, 𝑉 has an orthonormal basis 𝑒1, . . . , 𝑒𝑛 consisting of the eigenvectors of 𝑇 . Then,

𝑣 = ⟨𝑣, 𝑒1⟩𝑒1 + · · · + ⟨𝑣, 𝑒𝑛⟩𝑒𝑛 =⇒ 𝑇𝑣 = ⟨𝑣, 𝑒1⟩_1𝑒1 + · · · + ⟨𝑣, 𝑒𝑛⟩_𝑛𝑒𝑛

where _1, . . . , _𝑛 ≥ 0 are the eigenvalues of 𝑇 . So, ⟨𝑇𝑣, 𝑣⟩ = |⟨𝑣, 𝑒1⟩|2_1 + · · · + |⟨𝑣, 𝑒𝑛⟩|2_𝑛 ≥ 0, making 𝑇 a positive
operator.

Theorem 17.2
Let 𝑇 ∈ L(𝑉). The following statements are equivalent:

1. 𝑇 is positive

2. 𝑇 is self-adjoint and all eigenvalues of 𝑇 are nonnegative

3. 𝑇 has a positive square root

4. 𝑇 has a self-adjoint square root

5. There exists some 𝑅 ∈ L(𝑉) such that 𝑇 = 𝑅∗𝑅

Proof: We have already shown statement 1 ⇐⇒ statement 2. We will now prove statement 2 =⇒ statement 3 =⇒ statement
4 =⇒ statement 5 =⇒ statement 1

• statement 2 =⇒ statement 3
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By the Spectral Theorem, there is an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 such that [𝑇]𝑒𝑒 is diagonal with _1, . . . , _𝑛 ≥ 0.
Let 𝑆 ∈ L(𝑉) such that

[𝑆]𝑒𝑒 =

√
_1

. . . √
_𝑛


Then,

[
𝑆2

]𝑒
𝑒
= ( [𝑆]𝑒𝑒)2 = [𝑇]𝑒𝑒, so 𝑆2 = 𝑇 . Since 𝑆 is self-adjoint (by the Spectral Theorem), and its eigenvalues are√

_1, . . . ,
√
_𝑛 ≥ 0, it is also positive.

• statement 3 =⇒ statement 4
This is just a restatement of what was said at the end of last proof.

• statement 4 =⇒ statement 5
If 𝑇 = 𝑅2 with 𝑅 = 𝑅∗, then 𝑇 = 𝑅𝑅 = 𝑅∗𝑅.

• statement 5 =⇒ statement 1
If 𝑇 = 𝑅∗𝑅, then 𝑇∗ = (𝑅∗𝑅)∗ = 𝑅∗𝑅∗∗ = 𝑅∗𝑅, so 𝑇 is self-adjoint. Also, ⟨𝑇𝑣, 𝑣⟩ = ⟨𝑅∗𝑅𝑣, 𝑣⟩ = ⟨𝑅𝑣, 𝑅∗∗𝑣⟩ =

⟨𝑅𝑣, 𝑅𝑣⟩ = ∥𝑅𝑣∥2 ≥ 0, making 𝑇 positive as well.

Example 17.2
Given an example of a 2 × 2 matrix 𝐴 such that 𝐴 ≠ 𝐼2 but 𝐴2 = 𝐼2.

There are two possible ways to think about it:

• Any matrix representing a reflection about a line through the origin. One special case of this is a rotation by 𝜋

radians, but that’s equivalent to a reflection across 𝑦 = 𝑥.

• What about other kinds of matrices? Note that

𝐴2 = 𝐼 =⇒ 𝐴 = 𝐴−1 =⇒ 𝐴 =

[
𝑎 𝑏

𝑐 𝑑

]
=

1

det(𝐴)

[
𝑑 −𝑏

−𝑐 𝑎

]
= 𝐴−1

So,

𝑎 =
𝑑

det(𝐴)
𝑑 =

𝑎

det(𝐴)

𝑏 = − 𝑏

det(𝐴)
𝑐 = − 𝑐

det(𝐴)

Then, 𝑎 = 𝑎
(det(𝐴) )2 and 𝑑 = 𝑑

(det(𝐴) )2 so either 𝑎 = 𝑑 = 0 or det(𝐴) = ±1.

If det(𝐴) = 1, then 𝑏 = 𝑐 = 0 and 𝑎 = 𝑑 = 1 or 𝑎 = 𝑑 = −1. Thus, if 𝐴2 = 𝐼 and det(𝐴) = 1, then 𝐴 = ±𝐼.
However, if det(𝐴) = −1, then 𝑎 = −𝑑 and

𝐴 =

[
𝑎 𝑏

𝑐 −𝑎

]
with −𝑎2 − 𝑏𝑐 = −1 or 𝑎2 + 𝑏𝑐 = 1. There are many solution to an equation of this form:

– If 𝑎 ≠ ±1, then 𝑏 can be anything non-zero and 𝑐 can be uniquely determined
– If 𝑎 = ±1, then either 𝑏 or 𝑐 must be 0 and the other can be anything

In fact, any matrix similar to a solution is also a solution. If 𝐴2 = 𝐼 and 𝐵 = 𝑆−1𝐴𝑆, then 𝐵2 = 𝑆−1𝐴𝑆𝑆−1𝐴𝑆 =

𝑆−1𝐴2𝑆 = 𝑆−1𝐼𝑆 = 𝐼.
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Note 17.1
The example above also shows that the only positive square root of 𝐼 is 𝐼 itself.

Theorem 17.3
Every positive operator on 𝑉 has a unique positive square root.

17.2 Isometries

Definition 17.2: Isometry
Let (𝑉, ∥·∥𝑉 ) and (𝑊, ∥·∥𝑊 ) be two normed vector spaces over F. Then, 𝑇 ∈ L(𝑉,𝑊) is an isometry if ∥𝑇𝑣∥𝑊 = ∥𝑣∥𝑉
for all 𝑣 ∈ 𝑉 .

Note 17.2
Note that this is a more general definition than the one given in Axler. Often, the surjectivity of 𝑇 is also required.

Theorem 17.4
Let (𝑉, ⟨·, ·⟩𝑉 ) and (𝑊, ⟨·, ·⟩𝑊 ) be two inner product spaces over F (either R or C), both of dimension 𝑛. Then an
isometric isomorphism exists between 𝑉 and 𝑊 .

Proof: Choose an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 and 𝑓1, . . . , 𝑓𝑛 of 𝑊 . Then, 𝑇 (𝑐1𝑒1 + · · · + 𝑐𝑛𝑒𝑛) = 𝑐1 𝑓1 + · · · + 𝑐𝑛 𝑓𝑛
defines an isomorphism from 𝑉 onto 𝑊 . Since any 𝑣 ∈ 𝑉 can be written as 𝑣 = 𝑐1𝑒1 + · · · + 𝑐𝑛𝑒𝑛, observe that

∥𝑣∥𝑉 = ⟨𝑣, 𝑣⟩𝑉
= ⟨𝑐1𝑒1 + · · · + 𝑐𝑛𝑒𝑛, 𝑐1𝑒1 + · · · + 𝑐𝑛𝑒𝑛⟩
= 𝑐21 + · · · + 𝑐2𝑛

∥𝑇𝑣∥𝑊 = ⟨𝑇𝑣, 𝑇𝑣⟩𝑊
= ⟨𝑐1 𝑓1 + · · · + 𝑐𝑛 𝑓𝑛, 𝑐1 𝑓1 + · · · + 𝑐𝑛 𝑓𝑛⟩
= 𝑐21 + · · · + 𝑐2𝑛

Since this holds for any arbitrary 𝑣 ∈ 𝑉 , the map 𝑇 is an isometry.

Note 17.3
The proposition does not hold for normed vector spaces. For example, R𝑛 with a 𝑝-norm and R𝑛 with a 𝑝′-norm with
𝑝 ≠ 𝑝′ are not isometric.

Here is the more specific definition of an Isometry that Axler gives in his textbook:

Definition 17.3: Isometry
The operator 𝑆 ∈ L(𝑉), where 𝑉 is a finite-dimensional inner product space, is an isometry iff ∥𝑆𝑣∥ = ∥𝑣∥ for all 𝑣 ∈ 𝑉 .

Example 17.3
Here are two basis examples:

• If 𝑉 = R𝑛 and ⟨·, ·⟩ is the dot product, then 𝑆 is an isometry iff [𝑆]𝑒𝑒 is an orthogonal matrix, i.e., ( [𝑆]𝑒𝑒)𝑇 [𝑆]𝑒𝑒 = 𝐼

(the columns of 𝑆 are orthonormal).

• If 𝑉 = C𝑛 and ⟨·, ·⟩ is the Euclidean inner product, then 𝑆 is an isometry iff [𝑆]𝑒𝑒 is a unitary matrix, i.e.,
( [𝑆]𝑒𝑒)∗ [𝑆]𝑒𝑒 = 𝐼 (the columns of 𝑆 are orthonormal).
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Theorem 17.5
Suppose 𝑆 ∈ L(𝑉). Then, the following are equivalent:

1. 𝑆 is an isometry

2. ⟨𝑆𝑢, 𝑆𝑣⟩ = ⟨𝑢, 𝑣⟩ for all 𝑢, 𝑣 ∈ 𝑉

3. 𝑆𝑒1, . . . , 𝑆𝑒𝑛 is orthonormal for every orthonormal list of vectors 𝑒1, . . . , 𝑒𝑛

4. There is an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 such that 𝑆𝑒1, . . . , 𝑆𝑒𝑛 is also orthonormal

5. 𝑆∗𝑆 = 𝐼

6. 𝑆𝑆∗ = 𝐼

7. 𝑆∗ is an isometry

8. 𝑆 is invertible with 𝑆−1 = 𝑆∗

Proof: We will not prove all of these statements. However, here is a sketch of two of the proofs:

• statement 1 =⇒ statement 2
Use the fact that

⟨𝑆𝑢, 𝑆𝑣⟩ = ∥𝑆𝑢 + 𝑆𝑣∥2 − ∥𝑆𝑢 − 𝑆𝑣∥2

4

• statement 4 =⇒ statement 5
Following the proof above, ⟨𝑒𝑖 , 𝑒 𝑗⟩ = ⟨𝑆𝑒𝑖 , 𝑆𝑒 𝑗⟩ for an orthonormal 𝑒1, . . . , 𝑒𝑛. So, ⟨𝑆∗𝑆𝑒𝑖 , 𝑒 𝑗⟩ = ⟨𝑒𝑖 , 𝑒 𝑗⟩. Express
𝑢, 𝑣 ∈ 𝑉 in terms of the orthonormal basis 𝑒1, . . . , 𝑒𝑛 and expand to get that ⟨𝑆∗𝑆𝑢, 𝑣⟩ = ⟨𝑢, 𝑣⟩ holds for all 𝑢, 𝑣 ∈ 𝑉 .
Thus, 𝑆∗𝑆 = 𝐼.

Example 17.4
𝑆 is an isometry iff 𝑆 is normal and all eigenvalues of 𝑆 have absolute value 1.

Example 17.5: 7C Exercise 2
Suppose 𝑇 is a positive operator on 𝑉 . Suppose 𝑣, 𝑤 ∈ 𝑉 are such that 𝑇𝑣 = 𝑤 and 𝑇𝑤 = 𝑣. Prove that 𝑣 = 𝑤.

Proof: Note that 𝑇 (𝑇𝑣) = 𝑇𝑤 = 𝑣 so 𝑇2𝑣 = 𝑣. Either 𝑣 = 0 and 𝑤 = 0 or 𝑣 is a 1-eigenvector of 𝑇2. Since 𝑇 is
diagonalizable, the eigenvectors of 𝑇2 are precisely those of 𝑇 . So, 𝑣 is either a +1-eigenvector or a −1-eigenvector of
𝑇 . However, since 𝑇 is positive, 𝑣 must be a 1-eigenvector and 𝑣 = 𝑇𝑣 = 𝑤.

Example 17.6: 7C Exercise 7
Suppose 𝑇 is a positive operator on 𝑇 . Prove that 𝑇 is invertible iff ⟨𝑇𝑣, 𝑣⟩ > 0 for all 𝑣 ≠ 0 in 𝑉 .

Proof: If 𝑇 is not invertible, then there is a vector 𝑣 ≠ 0 such that 𝑇𝑣 = 0. For this, ⟨𝑇𝑣, 𝑣⟩ = ⟨0, 𝑣⟩ = 0. So, ⟨𝑇𝑣, 𝑣⟩ > 0
for all 𝑣 ≠ 0 implies that 𝑇 is invertible (contrapositive).

If 𝑇 is invertible and positive, then the positive square root 𝑆 of 𝑇 is also invertible. So, ⟨𝑇𝑣, 𝑣⟩ = ⟨𝑆∗𝑆𝑣, 𝑣⟩ =

⟨𝑆𝑣, 𝑆𝑣⟩ = ∥𝑆𝑣∥2 > 0 if 𝑣 ≠ 0 since 𝑆𝑣 ≠ 0.

Example 17.7: 7C Exercise 13
Prove or give a counterexample: If 𝑆 ∈ L(𝑉) and there is an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 such that ∥𝑆𝑒𝑖 ∥ = 1 for
each 𝑒𝑖 , then 𝑆 is an isometry.
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Answer: This statement is False. Let 𝑉 = R2 with ⟨·, ·⟩ as the usual dot product, 𝑒1, 𝑒2 as the standard basis and

[𝑆]𝑒𝑒 =
[
1 1/

√
2

0 1/
√
2

]
That is, 𝑆𝑒1 = 𝑒1 =⇒ ∥𝑒1∥ = 1 and 𝑆𝑒2 = 1√

2
𝑒1 + 1√

2
𝑒2 =⇒ ∥𝑆𝑒2∥ = 1

2 + 1
2 = 1. However, 𝑆 is clearly not an

isometry (it’s not even normal).

Example 17.8: 7C Exercise 9
Prove or disprove: the identity operator on R2 has infinitely many self-adjoint square roots.

Proof: WLOG, let F = R and 𝑉 = R2 with ⟨·, ·⟩ as the usual dot product. Then, 𝐴2 = 𝐼 =⇒ 𝐴𝑇 𝐴 = 𝐼 implies that
𝐴 is an orthogonal 2 × 2 matrix. Then, 𝐴 is either a rotation or a reflection matrix. The only rotation matrices that
satisfy 𝐴2 = 𝐼 are rotations by 0 and 𝜋 radians, i.e., 𝐴 = ±𝐼. However, any reflection matrix satisfies 𝐴2 = 𝐼. Then, the
self-adjoint square roots of the identity operator have matrices, with respect to the standard basis, of the forms[

1 0
0 1

]
,

[
−1 0
0 −1

]
,

[
cos \ sin \
sin \ − cos \

]
where the last matrix is a reflection about the line 𝑦 = tan

(
\
2

)
𝑥.
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18 Lecture 18

18.1 Polar Decomposition

Theorem 18.1: Polar Decomposition
If 𝑇 ∈ L(𝑉), then there is an isometry 𝑆 ∈ L(𝑉) such that 𝑇 = 𝑆

√
𝑇∗𝑇

Proof: This is a long proof so we will break it down into digestible parts:

• For any 𝑣 ∈ 𝑉 ,

∥𝑇𝑣∥2 = ⟨𝑇𝑣, 𝑇𝑣⟩
= ⟨𝑇∗𝑇𝑣, 𝑣⟩
= ⟨

√
𝑇∗𝑇

√
𝑇∗𝑇𝑣, 𝑣⟩

= ⟨
√
𝑇∗𝑇𝑣,

√
𝑇∗𝑇𝑣⟩

= ∥
√
𝑇∗𝑇𝑣∥2

This follows since 𝑇∗𝑇 should be a positive operator with a positive square root.

• Define a linear map 𝑆1 : range(
√
𝑇∗𝑇) ↦→ range(𝑇) by 𝑆1 (

√
𝑇∗𝑇𝑣) = 𝑇𝑣. The main idea is that we are trying to extend

𝑆1 to be an isometry on 𝑉 such that 𝑇𝑣 = 𝑆1
√
𝑇∗𝑇𝑣 for all 𝑣 ∈ 𝑉 .

• We first need to check that 𝑆1 is well defined. Suppose that
√
𝑇∗𝑇𝑣1 =

√
𝑇∗𝑇𝑣2. We need to show that 𝑇𝑣1 = 𝑇𝑣2.

Observe that ker(𝑇) ⊆ ker(
√
𝑇∗𝑇) ⊆ ker(𝑇∗𝑇) = ker(𝑇). So,

√
𝑇∗𝑇𝑣1 =

√
𝑇∗𝑇𝑣2 =⇒ 𝑣1 − 𝑣2 ∈ ker(

√
𝑇∗𝑇) = ker(𝑇).

Thus, 𝑇 (𝑣1 − 𝑣2) = 0 =⇒ 𝑇𝑣1 = 𝑇𝑣2.

• By the linearity of
√
𝑇∗𝑇 and 𝑇 , the map 𝑆1 is linear. Moreover, ∥𝑆1 (

√
𝑇∗𝑇𝑣)∥ = ∥𝑇𝑣∥ = ∥

√
𝑇∗𝑇𝑣∥ (from above). This

implies that 𝑆1 is indeed an from range(
√
𝑇∗𝑇) ↦→ range(𝑇).

• We need to extend 𝑆1 to be an isometry from 𝑉 ↦→ 𝑉 . Since 𝑉 is finite-dimensional and ker(
√
𝑇∗𝑇) = ker(𝑇),

then dim range(
√
𝑇∗𝑇) = dim range(𝑇) =⇒ dim range(

√
𝑇∗𝑇)⊥ = dim range(𝑇)⊥. Therefore, we can choose an

orthonormal basis 𝑒1, . . . , 𝑒𝑚 of range(
√
𝑇∗𝑇)⊥ and an orthonormal basis 𝑓1, . . . , 𝑓𝑚 of range(𝑇)⊥. Define the map

𝑆2 : range(
√
𝑇∗𝑇)⊥ ↦→ range(𝑇)⊥ as

𝑆2 (𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚) = 𝑎1 𝑓1 + · · · + 𝑎𝑚 𝑓𝑚

Thus, 𝑆2 maps range(
√
𝑇∗𝑇)⊥ isometrically onto range(𝑇)⊥ since

∥𝑎1𝑒1 + · · · + 𝑎𝑚𝑒𝑚∥2 = |𝑎1 |2 + · · · + |𝑎𝑚 |2 = ∥𝑎1 𝑓1 + · · · + 𝑎𝑚 𝑓𝑚∥2

• Let 𝑣 = 𝑢 + 𝑤 where 𝑢 ∈ range(
√
𝑇∗𝑇) and 𝑤 ∈ range(

√
𝑇∗𝑇)⊥. Define 𝑆𝑣 = 𝑆1𝑢 + 𝑆2𝑤. Since

∥𝑆𝑣∥2 = ∥𝑆1𝑢 + 𝑆2𝑤∥2 = ∥𝑆1𝑢∥2 + ∥𝑆2𝑤∥2 = ∥𝑢∥2 + ∥𝑤∥2 = ∥𝑢 + 𝑤∥2

the map 𝑆 is an isometry on 𝑉 .

• Now, we only need to check that 𝑇 = 𝑆
√
𝑇∗𝑇 . First, note that

√
𝑇∗𝑇𝑣 ∈ range(

√
𝑇∗𝑇) satisfies

√
𝑇∗𝑇𝑣 = 𝑢 + 𝑤 where

𝑢 =
√
𝑇∗𝑇𝑣 ∈ range(

√
𝑇∗𝑇) and 𝑤 = 0 ∈ range(

√
𝑇∗𝑇)⊥. Therefore, 𝑆

√
𝑇∗𝑇𝑣 = 𝑆1 (

√
𝑇∗𝑇𝑣) + 𝑆2 (0) = 𝑇𝑣 for all 𝑣 ∈ 𝑉 .

18.2 Singular Values

Definition 18.1: Singular Values
Suppose that 𝑇 ∈ L(𝑉). The singular values of 𝑇 are the eigenvalues of

√
𝑇∗𝑇 .
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Note 18.1
Actually, if 𝑇 ∈ L(𝑉,𝑊) and 𝑊 is also a finite-dimensional inner product space over F, then the eigenvalues of

√
𝑇∗𝑇

are still defined (since
√
𝑇∗𝑇 ∈ L(𝑉)). The singular values of 𝑇 ∈ L(𝑉,𝑊) are the eigenvalues of

√
𝑇∗𝑇 so they are

defined as well.

Note 18.2
It is a universal convention to list singular values in non-increasing order. If dim = 𝑛, then common notations for the
singular values of 𝑇 are 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎𝑛 or 𝑠1 ≥ 𝑠2 ≥ · · · ≥ 𝑠𝑛.

Note 18.3
If𝑇 ∈ L(𝑉) and dim𝑉 = 𝑛, then

√
𝑇∗𝑇 is a positive operator and𝑉 has 𝑛 non-negative real eigenvalues 𝑠1 ≥ · · · ≥ 𝑠𝑛 ≥ 0

(some 𝑠 𝑗 possibly repeated) by the Spectral Theorem.

Theorem 18.2: Singular Value Decomposition
Suppose𝑇 ∈ L(𝑉) has singular values 𝑠1, . . . , 𝑠𝑛. Then, there is an orthonormal bases 𝑒 = 𝑒1, . . . , 𝑒𝑛 and 𝑓 = 𝑓1, . . . , 𝑓𝑛
in 𝑉 such that

𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩ 𝑓1 + · · · + 𝑠𝑛⟨𝑣, 𝑒𝑛⟩ 𝑓𝑛
i.e.,

[𝑇] 𝑓𝑒 =


𝑠1 0 . . . 0
0 𝑠2 . . . 0
...

...
. . .

...

0 0 . . . 𝑠𝑛


Proof: Note that

√
𝑇∗𝑇 is a positive operator. So, by the spectral theorem, there is an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of 𝑉 such

that
√
𝑇∗𝑇𝑒 𝑗 = 𝑠 𝑗𝑒 𝑗 for all 𝑗 ≤ 𝑛. Moreover, 𝑣 = ⟨𝑣, 𝑒1⟩𝑒1 + · · · + ⟨𝑣, 𝑒𝑛⟩𝑒𝑛 since 𝑒1, . . . , 𝑒𝑛 is orthonormal. Then,

√
𝑇∗𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑒1 + · · · + 𝑠𝑛⟨𝑣, 𝑒𝑛⟩𝑒𝑛

Following the polar decomposition of 𝑇 ,

𝑇𝑣 = 𝑆
√
𝑇∗𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑆𝑒1 + · · · + 𝑠𝑛⟨𝑣, 𝑒𝑛⟩𝑆𝑒𝑛

Since 𝑆 is an isometry, the list 𝑆𝑒1, . . . , 𝑆𝑒𝑛 is also an orthonormal basis. Taking 𝑓 𝑗 = 𝑆𝑒 𝑗 , we get the desired result.

Theorem 18.3
If 𝑇 ∈ L(𝑉), then the singular values of 𝑇 are the non-negative square roots of the eigenvalues of 𝑇∗𝑇 .

Proof: By the spectral theorem, there is an orthonormal basis 𝑒1, . . . , 𝑒𝑛 of𝑉 with
√
𝑇∗𝑇𝑒𝑘 = 𝑠𝑘𝑒𝑘 for all 𝑘 ≤ 𝑛. However, that

also makes 𝑒𝑘 an 𝑠2
𝑘
-eigenvector of 𝑇∗𝑇 . In other words, 𝐸 (𝑠𝑘 ,

√
𝑇∗𝑇) = 𝐸 (𝑠2

𝑘
, 𝑇∗𝑇). Moreover, since

√
𝑇∗𝑇 and 𝑇∗𝑇 are both

diagonalizable, the multiplicities of their eigenvalues must also be the same.

Definition 18.2: Operator Norm
Let 𝑉 be a normed vector space and 𝑇 ∈ L(𝑉). Define

∥𝑇 ∥ = max
𝑥≠0

∥𝑇𝑥∥
∥𝑥∥ = max

𝑥≠0

𝑇 (
𝑥

∥𝑥∥

) = max
∥𝑥 ∥=1

∥𝑇 (𝑥)∥

In fact, if ∥·∥ =
√︁
⟨·, ·⟩, then ∥𝑇 ∥ will equal 𝜎1, the largest singular value of 𝑇 .
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Theorem 18.4
Here are some properties of an operator norm:

1. ∥𝑇 ∥ = 0 iff 𝑇 is the zero operator

2. ∥𝛼𝑇 ∥ = |𝛼 |∥𝑇 ∥ if 𝛼 ∈ F

3. ∥𝑇 + 𝑆∥ ≤ ∥𝑇 ∥ + ∥𝑆∥

Proof: Proofs of statements 1 and 2 is left as an exercise for the reader. We will prove statement 3 now:

∥𝑇 + 𝑆∥ = max
∥𝑥 ∥=1

∥(𝑇 + 𝑆)𝑥∥

= max
∥𝑥 ∥=1

∥𝑇𝑥 + 𝑆𝑥∥

≤ max
∥𝑥 ∥=1

∥𝑇𝑥∥ + ∥𝑆𝑥∥

≤ max
∥𝑥 ∥=1

∥𝑇𝑥∥ + max
∥𝑥 ∥=1

∥𝑆𝑥∥

= ∥𝑇 ∥ + ∥𝑆∥

Example 18.1: 7D Exercise 12
Prove or give a counterexample: If 𝑇 ∈ L(𝑉), then the singular values of 𝑇2 are the squares of the singular values of 𝑇 .

Answer: This statement is false. Consider the backward shift 𝑇 : R2 ↦→ R2 defined over the usual dot product. Then,

[𝑇]𝑒𝑒 =
[
0 1
0 0

]
[𝑇∗]𝑒𝑒 =

[
0 0
1 0

]
[𝑇∗𝑇]𝑒𝑒 =

[
0 0
1 0

] [
0 1
0 0

]
=

[
0 0
0 1

]
Thus, the singular values of 𝑇 are

√
1 = 1 and

√
0 = 0. However,[

𝑇2
]𝑒
𝑒
= ( [𝑇]𝑒𝑒)2

=

[
0 1
0 0

]2
=

[
0 0
0 0

]
Thus, 𝑇2 is the zero operator and its singular values are just 0 and 0.

Example 18.2: 7D Exercise 13
Prove that 𝑇 is invertible iff 0 is not a singular value of 𝑇 .

Proof: Note that

0 is not a singular value of 𝑇 ⇐⇒ 0 is not an eigenvalue of 𝑇∗𝑇

⇐⇒ ker(𝑇∗𝑇 − 0𝐼) = {0}
⇐⇒ ker(𝑇∗𝑇) = {0}
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⇐⇒ ker(𝑇) = {0}
⇐⇒ 𝑇 is invertible

Theorem 18.5
If 𝑇 ∈ L(𝑉), then ∥𝑇 ∥ exists in the case that ∥·∥ =

√︁
⟨·, ·⟩.

Proof: During the existence proof of the polar decomposition, we showed that ∥𝑇𝑣∥2 = ∥
√
𝑇∗𝑇𝑣∥2 for all 𝑣 ∈ 𝑉 . Moreover,√

𝑇∗𝑇𝑣 = 𝑠1⟨𝑣, 𝑒1⟩𝑒1 + · · · + 𝑠𝑛⟨𝑣, 𝑒𝑛⟩𝑒𝑛, i.e.,

[√
𝑇∗𝑇

]𝑒
𝑒
=


𝑠1

. . .

𝑠𝑛


where 𝑠1 ≥ · · · ≥ 𝑠𝑛 ≥ 0. Then,

∥
√
𝑇∗𝑇𝑣∥2 = 𝑠21 |⟨𝑣, 𝑒1⟩|

2 + · · · + 𝑠2𝑛 |⟨𝑣, 𝑒𝑛⟩|2

∥𝑣∥2 = |⟨𝑣, 𝑒1⟩|2 + · · · + |⟨𝑣, 𝑒𝑛⟩|2

= 𝑐21 + · · · + 𝑐2𝑛

If ∥𝑣∥ = 1, then 𝑐21 + · · · + 𝑐2𝑛 = 1.
We can vary 𝑐1, . . . , 𝑐𝑛 over all possible coefficients such that 𝑐21+· · ·+𝑐2𝑛 = 1 and ∥

√
𝑇∗𝑇𝑣∥2 is maximized. Letting 𝑐21 = 1, i.e.,

taking 𝑣 = 𝑒1 works. Why? Maximizing ∥
√
𝑇∗𝑇𝑣∥ is equivalent to maximizing 𝑠21𝑐

2
1 + · · · + 𝑠2𝑛𝑐2𝑛 constrained to 𝑐21 + · · · + 𝑐2𝑛 = 1

and 𝑠1 ≥ 𝑠2 ≥ · · · ≥ 𝑠𝑛 ≥ 0. Note that

𝑠21𝑐
2
1 + 𝑠22𝑐

2
2 + · · · + 𝑠2𝑛𝑐

2
𝑛 ≤ 𝑠21𝑐

2
1 + 𝑠21𝑐

2
2 + · · · + 𝑠21𝑐

2
𝑛

= 𝑠21 (𝑐21 + · · · + 𝑐2𝑛)
= 𝑠21

Thus, choosing 𝑠21𝑐
2
1 + 𝑠22𝑐

2
2 + · · · + 𝑠2𝑛𝑐

2
𝑛 = 𝑠21 will maximize the given norm. Therefore, ∥𝑇 ∥ = ∥

√
𝑇∗𝑇 ∥ = 𝑠1 is the largest

singular value of 𝑇 .

Note 18.4
Just like max∥𝑥 ∥=1 ∥𝑇 (𝑥)∥ = 𝑠1, the largest singular value of 𝑇 , we can show that min∥𝑥 ∥=1 ∥𝑇 (𝑥)∥ = 𝑠𝑛, the smallest
singular value of 𝑇 .

Note 18.5
Since the singular values of 𝑇 are the eigenvalues of

√
𝑇∗𝑇 and 𝑇∗ depends on the inner product on 𝑉 , talking about the

singular values independently of some choice of inner product doesn’t make sense.

Note 18.6
The singular values of 𝑇 are not similarity invariant of 𝑇 , i.e., if 𝑆 is invertible, then 𝑇 and 𝑆−1 ◦ 𝑇 ◦ 𝑆 might not have
the same singular values.

Example 18.3
Let

𝐴 =

[
1 0
1 0

]
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𝐵 =

[
1 0
𝑎 0

]
for 𝑎 > 0 be defined over R2 with the regular dot product as the inner product. Then,[

1 0
0 𝑎

] [
1 0
1 0

]
︸  ︷︷  ︸

𝐴

[
1 0
0 𝑎

]−1
=

[
1 0
𝑎 0

]
︸  ︷︷  ︸

𝐵

Thus, 𝐴 and 𝐵 are similar matrices. Note that

𝐴𝑇 𝐴 =

[
1 1
0 0

] [
1 0
1 0

]
=

[
2 0
0 0

]
so the singular values of 𝐴 are

√
2 and 0. However, 𝐵 is a skew projection onto the lines 𝑦 = 𝑎𝑥 and

𝐵𝑇𝐵 =

[
1 𝑎

0 0

] [
1 0
𝑎 0

]
=

[
1 + 𝑎2 0

0 0

]
so the singular values of 𝐵 are

√
1 + 𝑎2 and 0 instead.
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19 Lecture 19

19.1 Singular Value Decomposition Cont.

We considered SVD at a transformation (specifically, operator) level before. Now consider it at a matrix level: let 𝐴 be an 𝑚 × 𝑛

matrix over R. Then, we can decompose it as 𝐴 = 𝑈Σ𝑉𝑇 where 𝑈 is an 𝑚 × 𝑚 orthogonal matrix 𝑈, 𝑉 is an 𝑛 × 𝑛 orthogonal
matrix and Σ is an 𝑚 × 𝑛 matrix with the singular values of 𝐴 along its diagonal. How can we arrive at this decomposition?

1. Consider 𝐵 = 𝐴𝑇 𝐴. Then, 𝐵 is a symmetric (or self-adjoint since it has real entries) 𝑛 × 𝑛 matrix. The spectral
theorem applies here and 𝐵 has real eigenvalues _1 ≥ · · · ≥ _𝑛 with corresponding eigenvectors 𝑣1, . . . , 𝑣𝑛 that form an
orthonormal basis of R𝑛. We claim that all _𝑘’s are non-negative, i.e., 𝐴𝑇 𝐴 is positive:〈

𝐴𝑇 𝐴𝑣𝑘 , 𝑣𝑘
〉
= ⟨_𝑘𝑣𝑘 , 𝑣𝑘⟩
= _𝑘 ∥𝑣𝑘 ∥2

= _𝑘〈
𝐴𝑇 𝐴𝑣𝑘 , 𝑣𝑘

〉
=

〈
𝐴𝑣𝑘 , (𝐴𝑇 )𝑇𝑣𝑘

〉
= ⟨𝐴𝑣𝑘 , 𝐴𝑣𝑘⟩
= ∥𝐴𝑣𝑘 ∥2

Thus, _𝑘 = ∥𝐴𝑣𝑘 ∥2 ≥ 0 for all 𝑗 ≤ 𝑛.

2. Let 𝜎𝑘 =
√
_𝑘 . These 𝜎𝑘 will form the singular values of 𝐴.

Note 19.1
If _1 ≥ · · · ≥ _𝑛 and 𝜎1 ≥ · · · ≥ 𝜎𝑛, then 𝜎𝑘 > 0 iff 𝑘 ≤ 𝑟 = rank(𝐴𝑇 𝐴) = rank(𝐴). Since 𝐴𝑇 𝐴 is symmetric, its
eigenvectors form an orthogonal matrix 𝑆 such that

𝑆𝑇 𝐴𝑇 𝐴𝑆 =


_1

. . .

_𝑛


where all _𝑘 are arranged in non-increasing order and _𝑘 = 0 for 𝑘 > 𝑟 = rank(𝐴𝑇 𝐴) = rank(𝐴). In other words, the
rank of a matrix is the number of nonzero entries along the main diagonal of its diagonalized matrix representation.

3. Consider 𝐴𝑣1, . . . , 𝐴𝑣𝑟 where 𝑟 = rank(𝐴) = rank(𝐴𝑇 𝐴). Let 𝑢𝑘 =
𝐴𝑣𝑘
𝜎𝑘

so that 𝐴𝑣𝑘 = 𝜎𝑘𝑢𝑘 .
We claim that all 𝐴𝑣𝑘’s are orthogonal to each other and ∥𝐴𝑣𝑘 ∥ = 𝑠𝑘 for all 𝑘 ≤ 𝑛. In other words, ∥𝑢𝑘 ∥ = 1 for 𝑘 ≤ 𝑟.
Why? Note that

⟨𝐴𝑣𝑘 , 𝐴𝑣𝑙⟩ =
〈
𝑣𝑘 , 𝐴

𝑇 𝐴𝑣𝑙
〉
= ⟨𝑣𝑘 , _𝑙𝑣𝑙⟩ = _𝑙 ⟨𝑣𝑘 , 𝑣𝑙⟩

Since ⟨𝑣𝑘 , 𝑣𝑙⟩ = 0, the vectors 𝐴𝑣𝑘 , 𝐴𝑣𝑙 are also orthogonal. Moreover,

∥𝐴𝑣𝑘 ∥2 = _𝑘 ∥𝑣𝑘 ∥2

so ∥𝐴𝑣𝑘 ∥ =
√
_𝑘 = 𝜎𝑘 . Therefore, ∥𝑢𝑘 ∥ = 1 as desired.

4. We have defined 𝑢𝑘 for 𝑘 ≤ 𝑟 . What about 𝑘 > 𝑟? We can simply extend 𝑢1, . . . , 𝑢𝑟 to an orthonormal basis 𝑢1, . . . , 𝑢𝑚
of R𝑚 using the Gram-Schmidt process.

In summary, if 𝐴 is an 𝑚 × 𝑛 real matrix, then we found an orthonormal basis 𝑣1, . . . , 𝑣𝑛 of R𝑛 based on the singular values of
𝐴, and used these to define an orthonormal basis 𝑢1, . . . , 𝑢𝑚 of R𝑚 such that 𝐴𝑣𝑘 = 𝜎𝑘𝑢𝑘 for 𝑘 ≤ 𝑟 and 𝐴𝑣𝑘 = 0 for 𝑘 > 𝑟,
where 𝑟 = rank(𝐴𝑇 𝐴) = rank(𝐴) ≤ 𝑛. How can we express this in a matrix form?

𝐴
[
𝑣1 . . . 𝑣𝑛

]︸            ︷︷            ︸
𝑉

=
[
𝐴𝑣1 . . . 𝐴𝑣𝑟 𝐴𝑣𝑟+1 . . . 𝐴𝑣𝑛

]
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=
[
𝜎1𝑢1 . . . 𝜎𝑟𝑢𝑟 0 . . . 0

]

=
[
𝑢1 . . . 𝑢𝑟 𝑢𝑟+1 . . . 𝑢𝑚

]︸                                     ︷︷                                     ︸
𝑈



𝜎1

. . .

𝜎𝑟

0
. . .

0

︸                               ︷︷                               ︸
Σ

where 𝑢𝑟+1, . . . , 𝑢𝑚 are multiplied by the 0 entries in Σ. Thus, 𝐴𝑉 = 𝑈Σ. Since 𝑉 is a square matrix whose columns are
orthonormal vectors, 𝑉𝑇𝑉 = 𝑉𝑉𝑇 = 𝐼𝑛. Thus, 𝑉−1 = 𝑉𝑇 and 𝐴 = 𝑈Σ𝑉𝑇 .

Example 19.1
Let

𝐴 =

[
𝑝 −𝑞
𝑞 𝑝

]
=⇒ 𝐴𝑇 𝐴 =

[
𝑝 𝑞

−𝑞 𝑝

] [
𝑝 −𝑞
𝑞 𝑝

]
=

[
𝑝2 + 𝑞2 0

0 𝑝2 + 𝑞2

]
So, the singular values of 𝐴 are

√︁
𝑝2 + 𝑞2 and

√︁
𝑝2 + 𝑞2. Geometrically, 𝐴 is just a rotation matrix times a scalar

stretching, i.e.,

𝐴 =
√︁
𝑝2 + 𝑞2


𝑝√

𝑝2+𝑞2
− 𝑞√

𝑝2+𝑞2

𝑞√
𝑝2+𝑞2

𝑝√
𝑝2+𝑞2


Note that the SVD of 𝐴 is

𝐴 =


𝑝√

𝑝2+𝑞2
− 𝑞√

𝑝2+𝑞2

𝑞√
𝑝2+𝑞2

𝑝√
𝑝2+𝑞2


[√︁

𝑝2 + 𝑞2 0

0
√︁
𝑝2 + 𝑞2

] [
1 0
0 1

]
This is actually the polar decomposition of 𝐴 as well! Since ∥𝐴𝑣1∥ = ∥𝐴𝑒1∥ =

√︁
𝑝2 + 𝑞2 and ∥𝐴𝑣2∥ = ∥𝐴𝑒2∥ =√︁

𝑝2 + 𝑞2, the matrix 𝐴 takes the unit square to a square with area |det(𝐴) | = 𝑝2 + 𝑞2 = 𝜎1 · 𝜎2.

Example 19.2
Let

𝐴 =


0 1
1 1
1 0

 =⇒ 𝐴𝑇 𝐴 =

[
0 1 1
1 1 0

] 
0 1
1 0
1 0

 =

[
2 1
1 2

]
The eigenvalues of 𝐴𝑇 𝐴 are _1 = 3, _2 = 1 so 𝜎1 =

√
3, 𝜎2 = 1. Moreover,

𝐸 (3, 𝐴𝑇 𝐴) = span

( [
1/
√
2

1/
√
2

] )
= span(𝑣1)

𝐸 (1, 𝐴𝑇 𝐴) = span

( [
−1/

√
2

1/
√
2

] )
= span(𝑣2)

And,

𝐴𝑣1 =


0 1
1 1
1 0


[
1/
√
2

1/
√
2

]
=


1/
√
2

2/
√
2

1/
√
2
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𝑢1 =
𝐴𝑣1

𝜎1
=


1/
√
6

2/
√
6

1/
√
6


𝐴𝑣2 =


0 1
1 1
1 0


[
−1/

√
2

1/
√
2

]
=


1/
√
2
0

−1/
√
2


𝑢2 =

𝐴𝑣1

𝜎1
=


1/
√
2
0

−1/
√
2


We need to find a third 𝑢3 that is orthonormal to 𝑢1, 𝑢2. Note that

𝑢3 =


1/
√
3

−1/
√
3

1/
√
3


works. Thus, the SVD of 𝐴 is given by

𝑉 =

[
1/
√
2 −1/

√
2

1/
√
2 1/

√
2

]
Σ =


√
3 0
0 1
0 0


𝑈 =


1/
√
6 1/

√
2 1/

√
3

2/
√
6 0 −1/

√
3

1/
√
6 −1/

√
2 1/

√
3


𝐴 =


1/
√
6 1/

√
2 1/

√
3

2/
√
6 0 −1/

√
3

1/
√
6 −1/

√
2 1/

√
3



√
3 0
0 1
0 0


[

1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]
Observe that 𝑉𝑇 is a rotation matrix, Σ is an embedding into R3 that also stretches/scales along the x-coordinate and 𝑈

is another orthogonal matrix that is neither a rotation nor a reflection!

Theorem 19.1
Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝑣 ∈ R𝑛. Then, 𝜎1∥𝑣∥ ≥ ∥𝐴𝑣∥ ≥ 𝜎𝑛∥𝑣∥ where 𝜎1, . . . , 𝜎𝑛 are the singular values of 𝐴.

Proof: Let 𝑣1, . . . , 𝑣𝑛 be an orthonormal basis of the eigenvectors of 𝐴𝑇 𝐴. Write 𝑣 = 𝑐1𝑣1+· · ·+𝑐𝑛𝑣𝑛. Then, ∥𝑣∥2 = 𝑐21+· · ·+𝑐2𝑛
and

∥𝐴𝑣∥2 = ∥𝑐1𝐴𝑣1 + · · · + 𝑐𝑛𝐴𝑣𝑛∥2

= 𝑐21∥𝐴𝑣1∥
2 + · · · + 𝑐2𝑛∥𝐴𝑣𝑛∥2

= 𝑐21𝜎
2
1 + · · · + 𝑐2𝑛𝜎

2
𝑛

by the Pythagorean theorem. Then,

𝑐21𝜎
2
1 + · · · + 𝑐2𝑛𝜎

2
1 ≥ 𝑐21𝜎

2
1 + · · · + 𝑐2𝑛𝜎

2
𝑛 ≥ 𝑐21𝜎

2
𝑛 + · · · + 𝑐2𝑛𝜎

2
𝑛

𝜎2
1 (𝑐21 + · · · + 𝑐2𝑛) ≥ ∥𝐴𝑣∥2 ≥ 𝜎2

𝑛 (𝑐21 + · · · + 𝑐2𝑛)
𝜎2
1 ∥𝑣∥

2 ≥ ∥𝐴𝑣∥2 ≥ 𝜎2
𝑛 ∥𝑣∥2

Thus, 𝜎1∥𝑣∥ ≥ ∥𝐴𝑣∥ ≥ 𝜎𝑛∥𝑛∥.
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Just like we defined operator norms earlier, if we extend this definition to matrices, then

∥𝐴∥ = max
∥𝑥 ∥≠0

∥𝐴𝑥∥
∥𝑥∥

= max
∥𝑥 ∥≠0

𝐴 𝑥

∥𝑥∥


= max

∥𝑣 ∥=1
∥𝐴𝑣∥

We showed that ∥𝐴𝑣∥ ≤ 𝜎1∥𝑣∥ for all 𝑣 ∈ R𝑛. So,
∥𝐴𝑣∥
∥𝑣∥ ≤ 𝜎1

if ∥𝑣∥ ≠ 0. Then, ∥𝐴∥ ≤ 𝜎1. However, ∥𝐴𝑣∥ = 𝜎1 and ∥𝑣∥ = 1 so ∥𝐴∥ = 𝜎1 is satisfied with equality as expected.

19.2 Geometry of the SVD

What happens if we look at each matrix in a singular value decomposition of an operator separately? The figure below depicts
an example of a 2 × 2 matrix:

Theorem 19.2
Let 𝐴 : R2 ↦→ R2 (for 𝑉 = R2 with the usual dot product) and 𝐴 is invertible. The image of the unit circle in R2 under 𝐴
is an ellipse. The length of the semi-major axis of the ellipse is 𝜎1, and the length of the semi-minor axis is 𝜎2. More
generally, if 𝐴 : R𝑛 ↦→ R𝑛 is invertible, then the image of the unit sphere in R𝑛 under 𝐴 is an 𝑛-dimensional ellipsoid
with axes of lengths 𝜎1, . . . , 𝜎𝑛.

• The matrix 𝑉𝑇 = 𝑉−1 is a rotation matrix

• The matrix Σ is a scaling/stretching matrix

• The matrix 𝑈 is an orthogonal matrix (can be a rotation, reflection or neither)
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Theorem 19.3
Let _ be a real eigenvalue of an 𝑛 × 𝑛 matrix 𝐴. Then, 𝜎𝑛 ≤ |_ | ≤ 𝜎1.

Proof: Let 𝑣 be a unit length _-eigenvector of 𝐴. Thus, 𝜎𝑛∥𝑣∥ ≤ ∥𝐴𝑣∥ ≤ 𝜎1∥𝑣∥ =⇒ 𝜎1∥𝑣∥ ≤ ∥_𝑣∥ ≤ 𝜎1∥𝑣∥ =⇒ 𝜎1∥𝑣∥ ≤
|_ |∥𝑣∥ ≤ 𝜎1∥𝑣∥. Then, 𝜎𝑛 ≤ |_ | ≤ 𝜎1 as intended.

Note 19.2
The result above is still true if _ is a complex eigenvalue of 𝐴.

Example 19.3
Let

𝐴 =

[
1 1
0 1

]
=⇒ 𝐴𝑇 𝐴 =

[
1 1
1 2

]
Both eigenvalues of 𝐴 are 1 but its singular values are 3±

√
5

2 instead. Note that 3−
√
5

2 ≤ 1 ≤ 3+
√
5

2 as expected.

Theorem 19.4
Let 𝐴 be an 𝑚 × 𝑛 matrix. Then, 𝐴 = 𝜎1𝑢1𝑣

𝑇
1 + · · · + 𝜎𝑟𝑢𝑟𝑣

𝑇
𝑟 where 𝑟 = rank(𝐴).

Proof: Σ is an 𝑚 × 𝑛 matrix with Σ 𝑗 , 𝑗 = 𝜎𝑗 if 𝑗 ≤ 𝑟 , and all of the other entries are 0. Then, break it down as Σ = Σ1 + · · · + Σ𝑟

where Σ 𝑗 has the ( 𝑗 , 𝑗)th entry as 𝜎𝑗 but all other entries are 0. Consider 𝑉𝑇
𝑘

to be the 𝑘th column of 𝑉𝑇 . Then,

𝑈Σ 𝑗𝑉
𝑇
𝑘 = (𝑉𝑇 )1𝑘 (𝑈Σ 𝑗 )1 + · · · + (𝑉𝑇 )𝑛𝑘 (𝑈Σ 𝑗 )𝑛 = (𝑉𝑇 ) 𝑗 ,𝑘 (𝑈Σ 𝑗 ) 𝑗

since all of the other terms will get cancelled by the 0s in Σ 𝑗 . We just showed that 𝑈Σ 𝑗 (𝑉𝑇 )𝑘 = (𝑉𝑇 ) 𝑗 ,𝑘𝜎𝑗𝑢 𝑗 . Then,

𝑈Σ 𝑗𝑉
𝑇 =

[
(𝑉𝑇 ) 𝑗1𝜎𝑗𝑢 𝑗 (𝑉𝑇 ) 𝑗2𝜎𝑗𝑢 𝑗 . . . (𝑉𝑇 ) 𝑗𝑛𝜎𝑗𝑢 𝑗

]
= 𝜎𝑗𝑢 𝑗

[
(𝑉𝑇 ) 𝑗1 . . . (𝑉𝑇 ) 𝑗𝑛

]
= 𝜎𝑗𝑢 𝑗𝑣

𝑇
𝑗

This follows since
[
(𝑉𝑇 ) 𝑗1 . . . (𝑉𝑇 ) 𝑗𝑛

]
is the 𝑗 th row of 𝑉𝑇 , i.e., the transpose of the 𝑗 th column of 𝑉 . Thus,

𝐴 = 𝑈Σ𝑉𝑇

= 𝑈 (Σ1 + Σ2 + · · · + Σ𝑛)𝑉𝑇

= 𝑈Σ1𝑉
𝑇 + · · · +𝑈Σ𝑛𝑉

𝑇

= 𝜎1𝑢1𝑣
𝑇
1 + · · · + 𝜎𝑛𝑢𝑛𝑣

𝑇
𝑛

Example 19.4
Let [

1 0
0 2

]
︸  ︷︷  ︸

𝐴

=

[
0 1
1 0

]
︸  ︷︷  ︸

𝑈

[
2 0
0 1

]
︸  ︷︷  ︸

Σ

[
0 1
1 0

]
︸  ︷︷  ︸

𝑉𝑇

Then,

𝐴 = 𝜎1𝑢1𝑣
𝑇
1 + 𝜎2𝑢2𝑣

𝑇
2

= 2

[
0
1

] [
0 1

]
+ 1

[
1
0

] [
1 0

]
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Example 19.5
A satellite transmits a picture containing 1000 × 1000 pixels. If the color of each pixel is digitized, this information can
be represented in 1000 × 1000 matrix 𝐴 with 1,000,000 entries.

If 𝐴 = 𝜎1𝑢1𝑣
𝑇
1 + · · · + 𝜎𝑟𝑢𝑟𝑣

𝑇
𝑟 , even though 𝑟 may be 1000 as well, many singular values of 𝐴 will most likely

be very small compared to first few singular values, and will contribute little to the actual image. If we ignore all but
say, 𝑘 = 10 of the singular values and transmit 𝜎1𝑢1𝑣

𝑇
1 + · · · + 𝜎𝑘𝑢𝑘𝑣

𝑇
𝑘

as an approximation to 𝐴, then we only used
about 𝑘 (1000 + 1000) = 10 · 2000 = 20000 numbers instead of a million entries to obtain a hopefully reasonably good
reconstruction of the original image. This is precisely the main idea behind dimensionality reduction via low-rank
approximation, and it has various applications in computer science and engineering!

Note 19.3
The SVD is hardly the only way to write 𝐴 as a sum of rank 1 outer products. It just happens to have a very special
property that the 𝑘th partial sum 𝐴𝑘 =

∑𝑘
𝑖=1 𝜎𝑖𝑢𝑖𝑣

𝑇
𝑖

carries as much “energy” of 𝐴 as possible in the sense that
∥𝐴 − 𝐵∥ ≥ ∥𝐴 − 𝐴𝑘 ∥ = 𝜎𝑘+1 (look at the theorem below) for all matrices 𝐵 of rank ≤ 𝑘 . Basically, 𝐴𝑘 gives the best
rank 𝑘 approximation to 𝐴 in this sense.

This implies, for example, that if 𝐴 is invertible, then the closest non-invertible matrix 𝐵 to 𝐴 is obtained by changing
the smallest 𝜎𝑛 of 𝐴 to 0, and otherwise leaving the SVD unchanged. In other words, if 𝐴 = 𝑈Σ𝑉𝑇 and Σ′ is Σ but with
Σ′
𝑛,𝑛 = 0, then 𝐵 = 𝑈Σ′𝑉𝑇 will be non-invertible.

Theorem 19.5: Eckart-Young-Misrky Theorem
Let 𝐴 be an 𝑚 × 𝑛 with rank(𝐴) = 𝑟, such that 𝐴 = 𝜎1𝑢1𝑣

𝑇
1 + · · · + 𝜎𝑟𝑢𝑟𝑣

𝑇
𝑟 . If 𝐵 is 𝑚 × 𝑛 and rank(𝐵) ≤ 𝑘 < 𝑟 and

𝐴𝑘 = 𝜎1𝑢1𝑣
𝑇
1 + · · · + 𝜎𝑘𝑢𝑘𝑣

𝑇
𝑘

, then ∥𝐴 − 𝐵∥ ≥ ∥𝐴 − 𝐴𝑘 ∥ = 𝜎𝑘+1.

Proof: First of all,
𝐴 − 𝐴𝑘 = 𝜎𝑘+1𝑢𝑘+1𝑣

𝑇
𝑘+1 + · · · + 𝜎𝑟𝑢𝑟𝑣

𝑇
𝑟

The expression on the RHS is an SVD of 𝐴 − 𝐴𝑘 with 𝜎𝑘+1 as the largest singular value so ∥𝐴 − 𝐴𝑘 ∥ = 𝜎𝑘+1.
Now, for the sake of contradiction, assume that ∥𝐴 − 𝐵∥ < ∥𝐴 − 𝐴𝑘 ∥ for some 𝐵 with rank(𝐵) ≤ 𝑘 . Then, following rank-
nullity, dimker(𝐵) = 𝑛 − rank(𝐵) ≥ 𝑛 − 𝑘 . So, there is an 𝑛 − 𝑘 dimensional subspace 𝑊 ⊆ ker(𝐵) ⊆ R𝑛 such that 𝐵𝑤 = 0
for all 𝑤 ∈ 𝑊 . Therefore, ∥𝐴𝑤∥ = ∥(𝐴 − 𝐵)𝑤∥ ≤ ∥𝐴 − 𝐵∥∥𝑤∥ < 𝜎𝑘+1∥𝑤∥ for 𝑤 ≠ 0 ∈ 𝑊 .
Now, let’s consider all 𝑤 such that ∥𝐴𝑤∥ ≥ 𝜎𝑘+1∥𝑤∥. Note that𝑉𝑘+1 = span(𝑣1, . . . , 𝑣𝑘+1) is a 𝑘+1 dimensional subspace ofR𝑛
such that ∥𝐴𝑤∥ ≥ 𝜎𝑘+1∥𝑤∥ for all𝑤 ∈ 𝑉𝑘+1. In fact, this is the largest subspace that will yield the lower bound above —𝑤 ∈ 𝑉𝑘+2
will yield an even smaller lower bound of 𝜎𝑘+2∥𝑤∥ while 𝑉𝑘 will not capture any 𝑤 such that 𝜎𝑘 ∥𝑤∥ > ∥𝐴𝑤∥ ≥ 𝜎𝑘+1∥𝑤∥.
Since dim𝑊 + dim𝑉𝑘+1 = (𝑛 − 𝑘) + (𝑘 + 1) = 𝑛 + 1, there must be a non-zero vector 𝑤 ∈ 𝑊 ∩ 𝑉𝑘+1 that will satisfy both
inequalities above — this is a contradiction!

Note 19.4
If 𝐴 is not normal, then by perturbing 𝐴 slightly, it is possible to change the eigenvalues (or some subset of the
eigenvalues) of 𝐴 fairly significantly. However, if 𝐴 is normal, then a small change in 𝐴 to another normal matrix will
result in a very small change to its eigenvalues. Since 𝐴𝑇 𝐴 is always normal, even if 𝐴 isn’t, the singular values of 𝐴

don’t change much with a slight perturbation of 𝐴. This makes the SVD highly robust and stable.
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20 Lecture 20

20.1 Review Problems

We went over a practice midterm and a past midterm in preparation for midterm 2.
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21 Lecture 21

21.1 Generalized Eigenvectors

Theorem 21.1
If 𝑇 ∈ L(𝑉), then {0} ⊂ ker(𝑇) ⊂ ker(𝑇2) ⊂ · · · ⊂ ker(𝑇 𝑘) ⊂ ker(𝑇 𝑘+1) ⊂ . . .

Proof: If 𝑇 𝑘𝑣 = 0, then 𝑇 𝑘+1 (𝑣) = 𝑇 (𝑇 𝑘𝑣) = 𝑇 (0) = 0 by the linearity of 𝑇 .

Theorem 21.2
Let 𝑇 ∈ L(𝑉). If ker(𝑇𝑚) = ker(𝑇𝑚+1), then ker(𝑇𝑚) = ker(𝑇𝑚+1) = ker(𝑇𝑚+2) = . . . .

Proof: We need to show that if 𝑇𝑚+ 𝑗+1 (𝑣) = 0, then 𝑇𝑚+ 𝑗 (𝑣) = 0 for all 𝑗 ≥ 0. Suppose 𝑇𝑚+ 𝑗+1 (𝑣) = 0. Then,

0 = 𝑇𝑚+ 𝑗+1 (𝑣)
= 𝑇𝑚+1 (𝑇 𝑗 (𝑣))

Thus, 𝑇 𝑗 (𝑣) ∈ ker(𝑇𝑚+1) = ker(𝑇𝑚) and 𝑇𝑚 (𝑇 𝑗 (𝑣)) = 𝑇𝑚+ 𝑗 (𝑣) = 0.

Theorem 21.3
Suppose 𝑇 ∈ L(𝑉). Let 𝑛 = dim𝑉 . Then, ker(𝑇𝑛) = ker(𝑇𝑛+1) = ker(𝑇𝑛+2) = . . . .

Proof: First off, the chain {0} = ker(𝑇0) ⊂ ker(𝑇) ⊂ ker(𝑇2) ⊂ . . . must eventually stabilize, as otherwise 𝑉 would be
infinite-dimensional. Suppose the chain stabilizes when 𝑘 = 𝑗 , i.e., {0} ⊂ ker(𝑇) ⊂ · · · ⊂ ker(𝑇 𝑗 ) = ker(𝑇 𝑗+1) = . . . . Then,
dimker(𝑇 𝑗 ) ≥ 𝑗 since the dimension of each kernel increases by 1 as the chain continues (If it did not, then the chain would
stabilize before 𝑗). Since you can’t have a dimension greater than 𝑛, we must have that 𝑗 ≤ 𝑛.

Recall that 𝑉 = ker(𝑇) ⊕ range(𝑇) can easily fail (though if 𝑇 is normal, this statement is true), as evident by

[𝑇]𝑒𝑒 =
[
0 1
0 0

]
In this case, ker(𝑇) = range(𝑇) = span(𝑒1) so R2 ≠ ker(𝑇) + range(𝑇). However,

Theorem 21.4
If dim𝑉 = 𝑛 and 𝑇 ∈ L(𝑉), then 𝑉 = ker(𝑇𝑛) ⊕ range(𝑇𝑛).

Proof: If 𝑇𝑛𝑥 = 0 and 𝑥 = 𝑇𝑛𝑦 for some 𝑦 ∈ 𝑉 (i.e., if 𝑥 ∈ ker(𝑇𝑛) ∩ range(𝑇𝑛)), then 𝑇𝑛𝑥 = 0 =⇒ 𝑇2𝑛𝑦 = 0. Then,
𝑦 ∈ ker(𝑇2𝑛) = ker(𝑇𝑛) and 𝑥 = 𝑇𝑛𝑦 = 0 so ker(𝑇𝑛) ∩ range(𝑇𝑛) = {0}. Moreover, applying the rank-nullity theorem to 𝑇𝑛

also yields dim𝑉 = dimker(𝑇𝑛) + dim range(𝑇𝑛). Thus, 𝑉 = ker(𝑇𝑛) ⊕ range(𝑇𝑛).

Definition 21.1: Generalized Eigenvectors
If 𝑇 ∈ L(𝑉) and _ is an eigenvalue of 𝑇 , then if 𝑣 ≠ 0 satisfies (𝑇 − _𝐼) 𝑗𝑣 = 0 for some 𝑗 ≥ 1, then 𝑣 is a generalized
eigenvector of 𝑇 (for the eigenvalue _, of course).

Definition 21.2: Generalized Eigenspace
If _ is an eigenvalue of 𝑇 ∈ L(𝑉), then the generalized eigenspace of 𝑇 for the eigenvalue _, denote by 𝐺 (_, 𝑇), is the
set of all generalized _-eigenvectors of 𝑇 , including 0.
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Note 21.1
Clearly 𝐸 (_, 𝑇) ⊆ 𝐺 (_, 𝑇) and it is easy to check that 𝐺 (_, 𝑇) is a subspace of 𝑉 .

Theorem 21.5
If dim𝑉 = 𝑛 and _ is an eigenvalue of 𝑇 , then 𝐺 (_, 𝑇) = ker((𝑇 − _𝐼)𝑛).

Proof: The vector 𝑣 ∈ 𝐺 (_, 𝑇) if (𝑇 − _𝐼) 𝑗𝑣 = 0 for some 𝑗 ≥ 0, i.e., if 𝑣 ∈ ker((𝑇 − _𝐼) 𝑗 ). However, for all 𝑗 ≤ 𝑛,
we have that ker((𝑇 − _𝐼) 𝑗 ) ⊆ ker((𝑇 − _𝐼)𝑛) so 𝑣 ∈ ker((𝑇 − _𝐼)𝑛). Thus, 𝐺 (_, 𝑇) ⊆ ker((𝑇 − _𝐼)𝑛) and, trivially,
ker((𝑇 − _𝐼)𝑛) ⊆ 𝐺 (_, 𝑇).

Example 21.1
Let 𝑇 ∈ L(R3) such that

[𝑇]𝑒𝑒 =

1 1 0
0 1 1
0 0 1


Since [𝑇]𝑒𝑒 is upper triangular, the only eigenvalue of 𝑇 is _ = 1. Then,

𝐸 (1, 𝑇) = ker(𝑇 − 𝐼) = ker


0 1 0
0 0 1
0 0 0

 = span
©«

1
0
0

ª®¬
What about ker((𝑇 − 𝐼) 𝑗 )? For 𝑗 = 2,

ker((𝑇 − 𝐼)2) = ker


0 0 1
0 0 0
0 0 0

 = span
©«

1
0
0

 ,

0
1
0

ª®¬
Finally,

𝐺 (1, 𝑇) = ker((𝑇 − 𝐼)3) = ker


0 0 0
0 0 0
0 0 0

 = span
©«

1
0
0

 ,

0
1
0

 ,

0
0
1

ª®¬
Of course, if we only wanted 𝐺 (1, 𝑇), we could have computed it as soon as we learned that _ = 1 was an eigenvalue.

Theorem 21.6
Let𝑇 ∈ L(𝑉) anddim𝑉 = 𝑛. Suppose that_1, . . . , _𝑚 are distinct eigenvalues of𝑇 and that 𝑣1, . . . , 𝑣𝑚 are corresponding
generalized eigenvectors. Then, 𝑣1, . . . , 𝑣𝑚 are linearly independent.

Proof: Suppose that 𝑎1, . . . , 𝑎𝑚 are scalars such that 0 = 𝑎1𝑣1 + · · · + 𝑎𝑚𝑣𝑚. Let 𝑘 be the max 𝑗 such that (𝑇 − _1𝐼) 𝑗𝑣1 ≠ 0
and let 𝑤 = (𝑇 − _1𝐼)𝑘𝑣1. Then, (𝑇 − _1𝐼)𝑤 = (𝑇 − _1𝐼)𝑘+1𝑣1 = 0 by the definition of 𝑘 . Thus, 𝑇𝑤 = _1𝑤 and 𝑤 ≠ 0. Since
(𝑇 − _𝐼)𝑤 = (_1 − _)𝑤 for all _ ∈ F, then (𝑇 − _𝐼)𝑛𝑤 = (_1 − _)𝑛𝑤 for all _ ∈ F too.
Applying (𝑇 − _1𝐼)𝑘 (𝑇 − _2𝐼)𝑛 . . . (𝑇 − _𝑚)𝑛 to both sides of

0 = 𝑎1𝑣1 + · · · + 𝑎𝑚𝑣𝑚

= 𝑎1 (𝑇 − _1𝐼)𝑘 (𝑇 − _2𝐼)𝑛 . . . (𝑇 − _𝑚)𝑛𝑣1
= 𝑎1 (𝑇 − _2𝐼)𝑛 . . . (𝑇 − _𝑚)𝑛𝑤

All (𝑇 − _ 𝑗 𝐼)𝑛s commute with each other, so all 𝑎 𝑗𝑣 𝑗 are erased except 𝑗 = 1. However, then

0 = 𝑎1 (𝑇 − _2𝐼)𝑛 . . . (𝑇 − _𝑚)𝑛𝑤
= 𝑎1 (_1 − _2)𝑛 . . . (_1 − _𝑚)𝑛𝑤

Since all _1, . . . , _𝑚 are distinct, 𝑎1 = 0. Similarly, by repeating the same process by considering for each 𝑗 , we can set each
𝑎 𝑗 = 0 for all 𝑗 ≤ 𝑚. Therefore, 𝑣1, . . . , 𝑣𝑚 are linearly independent as expected.
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21.2 Nilpotent Operators

Definition 21.3: Nilpotent
𝑇 ∈ L(𝑉) is nilpotent if 𝑇 𝑘 = 0 for some 𝑘 ≥ 0.

Example 21.2
Let 𝐷 : P𝑛 ↦→ P𝑛 be the differentiation operator. This is nilpotent as the 𝑛 + 1th derivative of any 𝑓 ∈ P𝑛 is the zero
polynomial, i.e., 𝐷𝑛+1 = 0.

Example 21.3

As we saw in a previous example, [𝑇]𝑒𝑒 =

0 1 0
0 0 1
0 0 0

 is nilpotent since 𝑇3 = 0.

Theorem 21.7
If dim𝑉 = 𝑛 and 𝑇 ∈ L(𝑉) is nilpotent, then 𝑇𝑛 = 0.

Proof: The chain {0} = ker(𝑇0) ⊂ ker(𝑇) ⊂ · · · ⊂ ker(𝑇 𝑘) = ker(𝑇 𝑘+1) = . . . stabilizes at the latest when 𝑘 = 𝑛. Hence,
𝑇 𝑗 = 0 for some 𝑗 implies that 𝑇 𝑘 = 0 for all 𝑘 ≥ 𝑛.

Theorem 21.8
If 𝑇 ∈ L(𝑉) is nilpotent, then there is a basis 𝛽 of 𝑉 such that

[𝑇]𝛽
𝛽
=



0 𝑎12 𝑎13 . . . 𝑎1𝑛
0 0 𝑎23 . . . 𝑎2𝑛
0 0 0 . . . 𝑎3𝑛
...

...
...

. . .
...

0 0 0 . . . 0


i.e., [𝑇]𝛽

𝛽
is upper triangular with all diagonal entries 0.

Proof: Choose a basis of ker(𝑇). Extend that to a basis of ker(𝑇2). Extend that to a basis of ker(𝑇3). Keep extending and
we eventually just get the basis of ker(𝑇𝑛) = 𝑉 . We claim that the matrix representation of 𝑇 with respect to this basis has the
required form.
The first dimker(𝑇) ≥ 1 columns are filled with 0s since those are all members of ker(𝑇). Now, consider a basis element
𝑣 ∈ ker(𝑇2) such that 𝑣 ∉ ker(𝑇). Then, 𝑇𝑣 ∈ ker(𝑇) and 𝑇𝑣 is a linear combination of the basis elements of ker(𝑇). That is,
the entries of that corresponding column will have non-zero numbers above the main diagonal.
Similarly, basis elements coming from ker(𝑇3) but not ker(𝑇2) are such that applying𝑇 to them will give us elements in ker(𝑇2)
and so on.

Example 21.4: 8A Exercise 5
Let 𝑇 ∈ L(𝑉), 𝑚 > 0, 𝑣 ∈ 𝑉 with 𝑇𝑚−1𝑣 ≠ 0 but 𝑇𝑚𝑣 = 0. Prove that 𝑣, 𝑇𝑣, . . . , 𝑇𝑚−1𝑣 is linearly independent.

Proof: Suppose that 𝑐0𝑣 + 𝑐1𝑇𝑣 + 𝑐2𝑇
2𝑣 + · · · + 𝑐𝑚−1𝑇𝑚−1𝑣 = 0. Apply 𝑇𝑚−1 to both sides to get 𝑐0𝑇𝑚−1𝑣 = 0. But

𝑇𝑚−1𝑣 ≠ 0 so 𝑐0 = 0. Thus, 𝑐1𝑇𝑣 + 𝑐2𝑇
2𝑣 + · · · + 𝑐𝑚−1𝑇𝑚−1𝑣 = 0. Apply 𝑇𝑚−2 to both sides to get 𝑐1𝑇𝑚−1𝑣 = 0.

But 𝑇𝑚−1𝑣 ≠ 0 so 𝑐1 = 0. Repeat this process to get 𝑐0 = 𝑐1 = · · · = 𝑐𝑚−1 = 0, making the list 𝑣, 𝑇𝑣, 𝑇2𝑣, . . . , 𝑇𝑚−1𝑣
linearly independent.
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Example 21.5: 8A Exercise 6
Let 𝑇 ∈ L(C3) be defined by 𝑇 (𝑧1, 𝑧2, 𝑧3) = (𝑧2, 𝑧3, 0). Prove that 𝑇 has no square root 𝑆, i.e., that there does not exist
𝑆 ∈ L(C3) such that 𝑆2 = 𝑇 .

Proof:

[𝑇]𝑒𝑒 =

0 1 0
0 0 1
0 0 0


Note that 𝑇3 = 0. So, if 𝑆2 = 𝑇 , then 𝑆6 = 0. Then, 𝑆3 = 0. As 𝑆2 = 𝑇 ≠ 0, we must have the chain
ker(𝑆) ⊂ ker(𝑆2) ⊂ ker(𝑆3) = C3. This is only possible if dimker(𝑆) = 1 and dimker(𝑆2) = 2. But, 𝑆2 = 𝑇 has rank
2, contradicting dimker(𝑆2) = 2. So, 𝑆2 = 𝑇 is impossible.

Example 21.6: 8A Exercise 13
Let 𝑉 be an inner product space and 𝑁 ∈ L(𝑉) a normal and nilpotent operator. Prove that 𝑁 = 0.

Proof: Since 𝑁 is nilpotent, there is a basis 𝛽 of𝑉 such that [𝑁]𝛽
𝛽

is upper triangular with all 0s along the main diagonal.
Apply Gram Schmidt to 𝛽 to obtain an orthonormal basis 𝛼 of 𝑉 for which [𝑁]𝛼𝛼 still has the same form. However,

now the same argument as the proof of the complex spectral theorem shows that [𝑁]𝛼𝛼 has off-diagonal elements that
are 0. So, every element of 𝑁 is 0, i.e., 𝑁 = 0.
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22 Lecture 22

22.1 Block Diagonal Matrices

Theorem 22.1
Let 𝑇 ∈ L(𝑉) and 𝑝 ∈ P (F). Then, ker(𝑝(𝑇)) and range(𝑝(𝑇)) are both 𝑇-invariant.

Proof: We will prove both parts:

• Suppose 𝑝(𝑇)𝑣 = 0, i.e., 0 ∈ ker(𝑝(𝑇)). Then, (𝑝(𝑇)) (𝑇𝑣) = 𝑇 (𝑝(𝑇)𝑣) = 𝑇 (0) = 0. So, 𝑇𝑣 ∈ ker(𝑝(𝑇)) and ker(𝑝(𝑇))
is 𝑇-invariant.

• Suppose 𝑣 ∈ range(𝑝(𝑇)), i.e., there is a 𝑢 ∈ 𝑉 such that 𝑣 = 𝑝(𝑇)𝑢. Then, 𝑇𝑣 = 𝑇 (𝑝(𝑇)𝑢) = 𝑝(𝑇) (𝑇𝑢). So,
𝑇𝑣 ∈ range(𝑝(𝑇)) and range(𝑝(𝑇)) is 𝑇-invariant.

Theorem 22.2
Suppose 𝑉 is a complex finite dimensional vector space and 𝑇 ∈ L(𝑉). Let _1, . . . , _𝑚 be the distinct eigenvalues of 𝑇 .
Then,

1. 𝑉 = 𝐺 (_1, 𝑇) ⊕ · · · ⊕ 𝐺 (_𝑚, 𝑇)

2. Each 𝐺 (_ 𝑗 , 𝑇) is 𝑇-invariant

3. Each (𝑇 − _ 𝑗 𝐼) |𝐺 (_ 𝑗 ,𝑇 ) is nilpotent.

Proof: We will prove all three conclusions:

• If dim𝑉 = 𝑛, then 𝐺 (_ 𝑗 , 𝑇) = ker((𝑇 −_ 𝑗 𝐼)𝑛). So, statement 2 follows from the first theorem by letting 𝑝(𝑧) = (𝑧−_ 𝑗 )𝑛.

• If 𝑣 ∈ 𝐺 (_ 𝑗 , 𝑇), then (𝑇 − _ 𝑗 𝐼)𝑛𝑣 = 0. Thus, (𝑇 − _ 𝑗 𝐼)𝑛 |𝐺 (_ 𝑗 ,𝑇 ) = 0, making (𝑇 − _ 𝑗𝑇) |𝐺 (_ 𝑗 ,𝑇 ) nilpotent so statement 3
also holds.

• Statement 1 can be proven by induction on 𝑛 = dim𝑉 . A basis with 𝑛 = 1 is trivial, so assume the result holds for all
vector spaces of dimension less than 𝑛. Since 𝑉 is a complex vector space, 𝑇 has an eigenvalue _1 ∈ C. Thus, 𝑚 ≥ 1. We
also have that 𝑉 = 𝐺 (_1, 𝑇) ⊕ range(𝑇 − _1𝑇)𝑛 by theorem 21.4. Call the second term 𝑈.
Note that 𝑈 is 𝑇-invariant by the theorem above (consider 𝑝(𝑧) = (𝑧 − _1)2). Since dim𝐺 (_1, 𝑇) ≥ 1 and dim𝑈 < 𝑛,
our induction hypothesis applies to 𝑇 |𝑈 . None of the generalized eigenvectors of 𝑇 |𝑈 correspond to eigenvalue _1 since a
generalized _1-eigenvector of 𝑇 |𝑈 would also be in 𝐺 (_1, 𝑇) ∩ {0}. Thus, each eigenvalue of 𝑇 |𝑈 is in the list _2, . . . , _𝑚.
Therefore, the induction hypothesis can be applied to the subspace 𝑈 to yield 𝑈 = 𝐺 (_2, 𝑇 |𝑈) ⊕ · · · ⊕ 𝐺 (_𝑚, 𝑇 |𝑈). So,
we basically need to show that 𝐺 (_ 𝑗 , 𝑇 |𝑈) = 𝐺 (_ 𝑗 , 𝑇) for each 𝑗 = 2, . . . , 𝑚. Observe that 𝐺 (_ 𝑗 , 𝑇 |𝑈) ⊆ 𝐺 (_ 𝑗 , 𝑇) is
trivial. We want to show that 𝐺 (_ 𝑗 , 𝑇) ⊆ 𝐺

(
_ 𝑗 , 𝑇 |𝑈

)
now.

Suppose 𝑣 ∈ 𝐺 (_ 𝑗 , 𝑇). Since 𝑉 = 𝐺 (_1, 𝑇) ⊕ 𝑈, each 𝑣 ∈ 𝑉 can be written as 𝑣1 + 𝑢 for some 𝑣1 ∈ 𝐺 (_1, 𝑇) and
𝑢 ∈ 𝑈. However, as 𝑈 = 𝐺 (_2, 𝑇 |𝑈) ⊕ · · · ⊕ 𝐺 (_𝑚, 𝑇 |𝑈), note that 𝑢 = 𝑣2 + · · · + 𝑣𝑚 where 𝑣𝑙 ∈ 𝐺 (_𝑙 , 𝑇 |𝑈) ⊆ 𝐺 (_𝑙 , 𝑇).
Therefore, 𝑣 = 𝑣1 + 𝑣2 + · · · + 𝑣𝑚 ∈ 𝐺 (_ 𝑗 , 𝑇). As generalized eigenvectors corresponding to distinct eigenvalues are
linearly independent, all of the 𝑣𝑖s above are 0 except for possibly 𝑣 𝑗 (in which case, we have 𝑣 = 𝑣 𝑗 here). In particular,
𝑣1 = 0 so 𝑣 must be in 𝑈. Thus, 𝑣 ∈ 𝐺 (_ 𝑗 , 𝑇 |𝑈) as well.

Theorem 22.3
Suppose𝑉 is a complex vector space and𝑇 ∈ L(𝑉). Then, there is a basis of𝑉 consisting of the generalized eigenvectors
of 𝑇 .

Proof: Let 𝑉 = 𝐺 (_1, 𝑇) ⊕ · · · ⊕𝐺 (_𝑚, 𝑇). Choose a basis of each 𝐺 (_ 𝑗 , 𝑇) and collate to obtain a basis of 𝑉 consisting of the
generalized eigenvectors of 𝑇 .
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Definition 22.1: Algebraic Multiplicity
Let 𝑇 ∈ L(𝑉) and 𝑛 = dim𝑉 . The multiplicity of an eigenvalue _ of 𝑇 is dim𝐺 (_, 𝑇), i.e., dimker(𝑇 − _𝐼)𝑛.

Example 22.1
Let 𝑇 : R5 ↦→ R5 be defined such that

[𝑇]𝑒𝑒 =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 6 1
0 0 0 0 6


Then, dim 𝐸 (2, 𝑇) = 1, dim 𝐸 (6, 𝑇) = 1, dim𝐺 (2, 𝑇) = 3 and dim𝐺 (6, 𝑇) = 2.

Theorem 22.4
If 𝑉 is a complex vector space and 𝑇 ∈ L(𝑉), then the sum of the algebraic multiplicities of 𝑇 equals dim𝑉 .

Proof: Immediately follows from 𝑉 = 𝐺 (_1, 𝑇) ⊕ · · · ⊕ 𝐺 (_𝑚, 𝑇) =⇒ dim𝑉 = dim𝐺 (_1, 𝑇) + · · · + dim𝐺 (_𝑚, 𝑇).

Definition 22.2: Block Diagonal Matrices
A square matrix 𝐴 is block diagonal if it has the form

𝐴 =


𝐴1

𝐴2

. . .

𝐴𝑚


where 𝐴1, . . . , 𝐴𝑚 are each square matrices lying along the diagonal and all other entries equal 0.

Example 22.2

𝐴 =


4

2 6
0 1

1 2
8 4


is a block diagonal matrix (the empty space, like always, is assumed to be filled with 0s).

Theorem 22.5
Let 𝑉 be a complex vector space and 𝑇 ∈ L(𝑉). Let _1, . . . , _𝑚 be the the distinct eigenvalues of 𝑇 with multiplicities
𝑑1, . . . , 𝑑𝑚. Then, there is a basis of 𝑉 with respect to which 𝑇 has a block diagonal matrix of the form

𝐴1

𝐴2

. . .

𝐴𝑚


where each 𝐴 𝑗 is a 𝑑 𝑗 × 𝑑 𝑗 upper triangular matrix of the form

𝐴 𝑗 =


_ 𝑗 . . . ∗

. . .
...

_ 𝑗
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Proof: Let 𝑉 = 𝐺 (_1, 𝑇) ⊕ · · · ⊕ 𝐺 (_𝑚, 𝑇) where each 𝐺 (_ 𝑗 , 𝑇) is 𝑇-invariant. Observe that

𝑇 |𝐺 (_ 𝑗 ,𝑇 ) = (_ 𝑗 𝐼 + 𝑇 − _ 𝑗 𝐼) |𝐺 (_ 𝑗 ,𝑇 ) = _ 𝑗 𝐼 |𝐺 (_ 𝑗 ,𝑇 ) + (𝑇 − _ 𝑗 𝐼) |𝐺 (_ 𝑗 ,𝑇 )

where (𝑇 − _ 𝑗𝑇) |𝐺 (_ 𝑗 ,𝑇 ) is nilpotent following theorem 22.2. Thus, there is a basis 𝛽 𝑗 of 𝐺 (_ 𝑗 , 𝑇) with respect to which the
matrix representation of (𝑇 − _ 𝑗𝑇) |𝐺 (_ 𝑗 ,𝑇 ) is an upper triangular nilpotent matrix. Then,

[
𝑇 |𝐺 (_ 𝑗 ,𝑇 )

]𝛽 𝑗

𝛽 𝑗
=

[
(𝑇 − _ 𝑗 , 𝑇) |𝐺 (_ 𝑗 ,𝑇 ) + _ 𝑗 𝐼 |𝐺 (_ 𝑗 ,𝑇 )

]𝛽 𝑗

𝛽 𝑗
=


0 . . . ∗

. . .
...

0

 +

_ 𝑗 . . . ∗

. . .
...

_ 𝑗

 =


_ 𝑗 . . . ∗

. . .
...

_ 𝑗


Now, collate the bases 𝛽1, 𝛽2, . . . , 𝛽𝑚 to get the desired basis of 𝑉 .

Theorem 22.6
If 𝑁 ∈ L(𝑉) is nilpotent, then 𝐼 + 𝑁 is invertible.

Proof: We will give two proofs of this statement:

1. What are the eigenvalues of 𝐼 + 𝑁? If _ is an one and 𝑣 ≠ 0 an eigenvector, then (𝐼 + 𝑁)𝑣 = _. However, for such _ and 𝑣,

𝑣 + 𝑁𝑣 = (𝐼 + 𝑁)𝑣 = _𝑣 =⇒ 𝑁𝑣 = (_ − 1)𝑣

Thus, the eigenvalues of 𝐼 + 𝑁 are the eigenvalues of 𝑁 shifted by 1. However, 𝑁 only has eigenvalue 0. Thus, 1 is the
only eigenvalue of 𝐼 + 𝑁 , so 𝐼 + 𝑁 is invertible.

2. Recall the formula for an infinite geometric series:
1

1 + 𝑥
= 1 − 𝑥 + 𝑥2 − 𝑥3 + . . .

for |𝑥 | < 1. Then,
𝐼

𝐼 + 𝑁
= 𝐼 − 𝑁 + 𝑁2 − 𝑁3 + . . .

However, as 𝑁 is nilpotent, the series converges (terminates since 𝑁dim𝑉 = 0). Thus, (𝐼 + 𝑁)−1 = 𝐼 − 𝑁 + 𝑁2 − . . . .
Actually, for a “Banach algebra” like 𝑀𝑛 (C), if ∥𝐴∥ < 1, then 𝐼 − 𝐴 is invertible and (𝐼 − 𝐴)−1 = 𝐼 + 𝐴 + 𝐴2 + 𝐴3 + . . .

“converges.” (see any book on Banach algebras for a detailed proof).

Theorem 22.7
If 𝑁 ∈ L(𝑉) is nilpotent, then 𝐼 + 𝑁 has a square root, i.e., there is an 𝑆 ∈ L(𝑉) such that 𝐼 + 𝑁 = 𝑆2.

Proof: Look at the Taylor series to
√
1 + 𝑥 (about 𝑥 = 0). Then,

√
1 + 𝑥 = 1 + 𝑓 ′ (0)𝑥 + 𝑓 ′′ (0)

2
𝑥2 + . . .

where 𝑓 (𝑥) =
√
1 + 𝑥. Then,

√
𝐼 + 𝑁 = 𝐼 + 𝑓 ′ (0)𝑁 + 𝑓 ′′ (0)

2
𝑁2 + . . .

Since 𝑁 is nilpotent, this is a finite series (all terms beyond the dim𝑉st are zero).

Theorem 22.8
If 𝑉 is complex vector space and 𝑇 ∈ L(𝑉) is invertible, then 𝑇 has a square root.

Proof: Look at
𝑇 |𝐺 (_ 𝑗 ,𝑇 ) = _ 𝑗 𝐼 |𝐺 (_ 𝑗 ,𝑇 )︸        ︷︷        ︸

≠0

+ (𝑇 − _ 𝑗 𝐼) |𝐺 (_ 𝑗 ,𝑇 )︸                ︷︷                ︸
nilpotent

This has a square root, when restricted to 𝐺 (_ 𝑗 , 𝑇), by a scaling modification to the identity matrix in the theorem above. You
can then assemble all the individual square roots (for each generalized eigenspace) to get a global square root.
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23 Lecture 23

23.1 Characteristic Polynomial

Definition 23.1: Characteristic Polynomial
Let 𝑉 be a complex vector space and 𝑇 ∈ L(𝑉). Let _1, . . . , _𝑚 be the distinct eigenvalues of 𝑇 with multiplicities
𝑑1, . . . , 𝑑𝑚. The polynomial 𝑐𝑇 (𝑧) = (𝑧 − _1)𝑑1 . . . (𝑧 − _𝑚)𝑑𝑚 is called the characteristic polynomial of 𝑇 .

Note 23.1
Some things to note:

1. The characteristic polynomial of 𝑇 has degree 𝑑1 + · · · + 𝑑𝑚 = dim𝑉 .

2. The roots of the characteristic polynomial are the eigenvalues of 𝑇

Theorem 23.1: Cayley-Hamilton Theorem
Let 𝑉 be a complex vector space and 𝑇 ∈ L(𝑉). Then, 𝑐𝑇 (𝑇) = 0.

Proof: Note that 𝑐𝑇 (𝑇) = (𝑇 −_1𝐼)𝑑1 . . . (𝑇 −_𝑚𝐼)𝑑𝑚 . Write 𝑣 = 𝑐1𝑣1+· · ·+𝑐𝑚𝑣𝑚 where 𝑣 𝑗 ∈ 𝐺 (_ 𝑗 , 𝑇). As (𝑇 −_ 𝑗 𝐼) |𝐺 (_ 𝑗 ,𝑇 )
is nilpotent and 𝑑 𝑗 = dim𝐺 (_ 𝑗 , 𝑇), then (𝑇 − _ 𝑗 𝐼)𝑑 𝑗 |𝐺 (_ 𝑗 ,𝑇 ) = 0|𝐺 (_ 𝑗 ,𝑇 ) . Since the (𝑇 − _ 𝑗 𝐼)𝑑 𝑗 s commute, we can see that
𝑐𝑇 (𝑇) |𝐺 (_ 𝑗 ,𝑇 )𝑣 𝑗 = 0. This is true for all 𝑗 = 1, . . . , 𝑚 and 𝑉 is partitioned into multiple generalized eigenspaces so 𝑐𝑇 (𝑇)𝑣 = 0
for all 𝑣 ∈ 𝑉 . In other words, 𝑐𝑇 (𝑇) is the zero operator on 𝑉 .

Note 23.2
Beware of the following invalid “proof” of the Cayley-Hamilton Theorem: 𝑐𝑇 (𝑧) = det(𝑧𝐼 − 𝑇) is a polynomial in 𝑧.
Thus, 𝑐𝑇 (𝑇) = det(𝑇 𝐼 − 𝑇) = det(0) = 0.

What’s the flaw here? While it is true that det(𝑧𝐼 − 𝑇) = 𝑐𝑇 (𝑧) = (𝑧 − _1)𝑑1 . . . (𝑧 − _𝑚)𝑑𝑚 is a polynomial in 𝑧

with coefficients in C, the expression 𝑧𝐼 −𝑇 occurring in det(𝑧𝐼 − 𝑇) is not a polynomial in 𝑧 with coefficients in C. So,
what does it even mean to plug in 𝑇 for 𝑧 in 𝑧𝐼 − 𝑇? It is det(𝑧𝐼 − 𝑇) that is a polynomial 𝑧, not 𝑧𝐼 − 𝑇 , so any valid
proof has to go through plugging in 𝑇 for 𝑧 in (𝑧 − _1)𝑑1 . . . (𝑧 − _𝑚)𝑑𝑚 .

Definition 23.2: Monic Polynomial
A monic polynomial is a polynomial whose highest degree coefficient equals 1.

Example 23.1
Note that 𝑝(𝑧) = 𝑧11 + 6𝑧3 + 3 is a monic polynomial of degree 11.

Definition 23.3: Minimal Polynomial
Suppose 𝑇 ∈ L(𝑉). There is a unique monic polynomial 𝑝 of the smallest degree such that 𝑝(𝑇) = 0. This is called the
minimal polynomial and is denoted by 𝑚𝑇 (𝑧).

Proof: We will establish the existence, followed by the uniqueness, of the minimal polynomial:

• Let 𝑛 = dim𝑉 . The list 𝐼, 𝑇, 𝑇2, . . . , 𝑇𝑛2 is not linearly independent in L(𝑉) as it is a list of length 𝑛2 + 1 and
dimL(𝑉) = 𝑛2. By the Linear Dependence Lemma, one of the operators in the list can be written as a linear combination
of the preceding ones, say 𝑇𝑚, such that 𝑎0𝐼 + 𝑎1𝑇 + · · · + 𝑎𝑚−1𝑇𝑚−1 +𝑇𝑚 = 0 for some scalars 𝑎1, . . . , 𝑎𝑚−1 ∈ F. Define
𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝑚−1𝑧𝑚−1 + 𝑧𝑚. Then, 𝑝 is monic and 𝑝(𝑇) = 0.

• The choice of 𝑚 (from the LDL) implies no monic polynomial 𝑞 of degree smaller than 𝑚 can satisfy 𝑞(𝑇) = 0. Suppose
𝑞 is a monic polynomial of degree 𝑚 and 𝑞(𝑇) = 0. Then, 𝑝(𝑇) = 0 = 𝑞(𝑇) so (𝑝 − 𝑞) (𝑇) = 0 and deg(𝑝 − 𝑞) < 𝑚.
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Dividing 𝑝 − 𝑞 by its leading coefficient would result in a monic polynomial with degree < 𝑚, yet (𝑝 − 𝑞) (𝑇) = 0.
However, that is a contradiction unless 𝑝 − 𝑞 is the zero polynomial in the first place.

Theorem 23.2
Suppose 𝑇 ∈ L(𝑉) and 𝑞 ∈ P (F). Then, 𝑞(𝑇) = 0 iff 𝑞 is a polynomial multiple of the minimal polynomial of 𝑇 .

Proof: Let 𝑝 = 𝑚𝑇 (𝑧) denote the minimal polynomial of𝑇 . Suppose 𝑞 is a polynomial multiple of 𝑚𝑇 , i.e., there is a polynomial
𝑠 ∈ P (F) such that 𝑞 = 𝑚𝑇 𝑠. Then, 𝑞(𝑇) = 𝑚𝑇 (𝑇)𝑠(𝑇) = 0 · 𝑠(𝑇) = 0.
For the converse, suppose that 𝑞(𝑇) = 0. By the definition of the division algorithm for polynomials, there are polynomials
𝑠, 𝑟 ∈ P (F) such that 𝑞 = 𝑝𝑠 + 𝑟 with degree deg(𝑟) < deg(𝑝) and 𝑝 = 𝑚𝑇 . Thus,

0 = 𝑞(𝑇) = 𝑝(𝑇)𝑠(𝑇) + 𝑟 (𝑇) = 𝑟 (𝑇)

But, 𝑟 must be the zero polynomial, as otherwise we could divide it by its leading coefficient to obtain a monic polynomial that
kills 𝑇 and has a degree less than that of 𝑝. That would again be a contradiction so 𝑟 = 0 and 𝑞 = 𝑝𝑠.

Theorem 23.3
If 𝑉 is a complex vector space and 𝑇 ∈ L(𝑉), then the characteristic polynomial 𝑐𝑇 (𝑧) is a polynomial multiple of the
minimal polynomial 𝑚𝑇 (𝑧) of 𝑇 .

Proof: It follows directly from the theorem above.

Theorem 23.4
Let 𝑇 ∈ L(𝑉). The roots of the minimal polynomial of 𝑇 are the eigenvalues of 𝑇 .

Proof: Let 𝑝(𝑧) = 𝑚𝑇 (𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝑚−1𝑧𝑚−1 + 𝑧𝑚 and let _ ∈ F be a zero of 𝑝. Then, 𝑝(𝑧) = (𝑧 −_)𝑞(𝑧) where 𝑞 is a
monic polynomial in P (F). Note that 𝑝(𝑇) = 𝑚𝑇 (𝑇) = 0 =⇒ (𝑇 − _𝐼)𝑞(𝑇)𝑣 = 0 for all 𝑣 ∈ 𝑉 . However, as deg(𝑞) < deg(𝑝)
and 𝑞(𝑇) ≠ 0, there is a 𝑣 ∈ 𝑉 with 𝑣 ≠ 0 such that 𝑞(𝑇)𝑣 ≠ 0. Thus, _ is an eigenvalue and 𝑞(𝑇)𝑣 is a _-eigenvector of 𝑇 .
To prove the other direction, suppose _ is an eigenvalue of 𝑇 . We need to show that it is a zero of the minimal polynomial. If 𝑣
is a _-eigenvector of 𝑇 , then 𝑣 is a 𝑝(_)-eigenvector of 𝑝(𝑇) for any polynomial 𝑝, including the minimal polynomial. That is,
we have 𝑝(𝑇)𝑣 = 𝑝(_)𝑣. However, 𝑝(𝑇) = 0. So, 0 = 𝑝(_)𝑣. Since, 𝑣 ≠ 0, this implies that 𝑝(_) = 0 and _ is a zero of 𝑝.

Example 23.2: 8C Exercise 1
Let 𝑇 ∈ L(C4) such that its eigenvalues are 3, 5, 8. Prove that (𝑇 − 3𝐼)2 (𝑇 − 5𝐼)2 (𝑇 − 8𝐼)2 = 0.

Proof: We know that C4 = 𝐺 (3, 𝑇) ⊕ 𝐺 (5, 𝑇) ⊕ 𝐺 (8, 𝑇). As 1 ≤ dim𝐺 (_, 𝑇) ≤ 2 by the pigeonhole principle, for all
three eigenvalues, (𝑇 − _𝐼)2 |𝐺 (_,𝑇 ) = 0|𝐺 (_,𝑇 ) . Thus, (𝑇 − 3𝐼)2 (𝑇 − 5𝐼)2 (𝑇 − 8𝐼)2 = 0.

Example 23.3: 8C Exercise 5
Give an example of an operator onC4 whose characteristic polynomial and minimal polynomial both equal 𝑧(𝑧−1)2 (𝑧−3).
Consider

[𝑇]𝑒𝑒 =


0

1 1
0 1

3


Example 23.4: 8C Exercise 6
Give an example of an operator on C4 whose characteristic polynomial equals 𝑧(𝑧 − 1)2 (𝑧 − 3) and whose minimal
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polynomial equals 𝑧(𝑧 − 1) (𝑧 − 3). Consider

[𝑇]𝑒𝑒 =


0

1
1

3


Why does this work? Note that

C4 = 𝐸 (0, 𝑇) ⊕ 𝐸 (1, 𝑇) ⊕ 𝐸 (3, 𝑇)
= 𝐺 (0, 𝑇) ⊕ 𝐺 (1, 𝑇) ⊕ 𝐺 (3, 𝑇)

Thus, 𝑐𝑇 (𝑧) = 𝑧(𝑧 − 1)2 (𝑧 − 3).
Let span(𝑣1) = 𝐸 (0, 𝑇), span(𝑣2, 𝑣3) = 𝐸 (1, 𝑇) and span(𝑣4) = 𝐸 (3, 𝑇). Then, 𝑣1, 𝑣2, 𝑣3, 𝑣4 is a basis of C4. If

𝑣 = 𝑐1𝑣1 + 𝑐2𝑣2 + · · · + 𝑐3𝑣3 + 𝑐4𝑣4, then 𝑇 (𝑇 − 𝐼) (𝑇 − 3𝐼)𝑣 = 0 as 𝑇 kills 𝑣1, 𝑇 − 𝐼 kills 𝑣2 and 𝑣3, and 𝑇 − 3𝐼 kills 𝑣4
— all of those operators commute. As each eigenvalue 0, 1, 3 of 𝑇 must be a zero of 𝑚𝑇 , the polynomial 𝑧(𝑧 − 1) (𝑧 − 3)
must divide 𝑚𝑇 (𝑧). However, that in itself is already monic so 𝑚𝑇 (𝑧) = 𝑧(𝑧 − 1) (𝑧 − 3).

Example 23.5: 8C Exercise 8
Let 𝑇 ∈ L(𝑉). Prove 𝑇 is invertible iff the constant term of 𝑚𝑇 (𝑧) is nonzero.

Proof: If 𝑝(𝑧) is any polynomial, then 𝑝(0) is the constant term of 𝑝. Thus, 0 is a zero of 𝑚𝑇 (𝑧) iff the constant of
𝑚𝑇 (𝑧) is 0. However, the zeroes of 𝑚𝑇 (𝑧) are precisely the eigenvalues of 𝑇 . Thus, 𝑇 is invertible iff the constant term
of 𝑚𝑇 (𝑧) is nonzero.

Example 23.6

Characteristic polynomials can also aid in finding, say, the SVD of a matrix. For example, let 𝐴 =

[
1 1
0 2

]
. Then,

𝐴𝑇 𝐴 =

[
1 1
1 5

]
det

(
𝐴𝑇 𝐴 − _𝐼

)
= (1 − _) (5 − _) − 1

0 = _2 − 6_ + 4

Thus, _ = 6±
√
20

2 = 3 ±
√
5. So, 𝜎1, 𝜎2 =

√︁
3 +

√
5,

√︁
3 −

√
5. Also,

𝐸 (3 +
√
5, 𝐴𝑇 𝐴) = ker

[
−2 −

√
5 1

1 2 −
√
5

]
= span

( [
−2 +

√
5

1

] )
= span

©«


−2+
√
5√

10−4
√
5

1√
10−4

√
5

ª®¬ = span(𝑣1)

𝐸 (3 −
√
5, 𝐴𝑇 𝐴) = ker

[
−2 +

√
5 1

1 2 +
√
5

]
= span

( [
−2 −

√
5

1

] )
= span

©«


−2−
√
5√

10+4
√
5

1√
10+4

√
5

ª®¬ = span(𝑣2)

Then,

𝐴𝑣1 =


−1+

√
5√

10−4
√
5

2√
10−4

√
5


𝑢1 =

𝐴𝑣1

𝜎1
=


−1+

√
5√

10−2
√
5

2√
10−2

√
5
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𝐴𝑣2 =


−1−

√
5√

10+4
√
5

2√
10+4

√
5


𝑢2 =

𝐴𝑣2

𝜎2
=


−1−

√
5√

10+2
√
5

2√
10+2

√
5


Finally, [

1 1
0 2

]
︸  ︷︷  ︸

𝐴

=


−1+

√
5√

10−2
√
5

−1−
√
5√

10−2
√
5

2√
10−2

√
5

2√
10+2

√
5

︸                       ︷︷                       ︸
𝑈

[√︁
3 +

√
5 0

0
√︁
3 −

√
5

]
︸                      ︷︷                      ︸

Σ


−2+

√
5√

10−4
√
5

1√
10−4

√
5

−2−
√
5√

10+4
√
5

1√
10+4

√
5

︸                       ︷︷                       ︸
𝑉𝑇

How does it compare to the diagonalization of 𝐴? Since 𝐴 is upper triangular, its eigenvalues are 1 and 2. Then,

𝐸 (2, 𝑇) = span

( [
1
1

] )
= span

([
1√
2
1√
2

])
𝐸 (1, 𝑇) = span

( [
1
0

] )
Thus, [

1 1
0 2

]
=

[
1√
2

1
1√
2

0

] [
2 0
0 1

] [ 1√
2

1
1√
2

0

]−1
=

[
1√
2

1
1√
2

0

] [
2 0
0 1

] [
0

√
2

1 −1

]
In 𝐴 = 𝑃𝐷𝑃−1 and 𝐴 = 𝑈Σ𝑉𝑇 , the biggest difference between the two is that 𝑈 and 𝑉 are orthogonal matrices while 𝑃

isn’t. Furthermore, there is no direct relationship between the eigenvalues and singular values of 𝐴.
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24 Lecture 24

24.1 Jordan Forms

Consider the following two examples as a preview of what is to come later in the lecture!

Example 24.1
Let 𝑉 = F4 and 𝑁 ∈ L(𝑉) such that 𝑁 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = (0, 𝑧1, 𝑧2, 𝑧3). In other words,

[𝑁]𝑒𝑒 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


Let 𝑣 = 𝑒1 = (1, 0, 0, 0) and choose the basis 𝛽 = 𝑁3𝑣, 𝑁2𝑣, 𝑁𝑣, 𝑣 = 𝑒4, 𝑒3, 𝑒2, 𝑒1. Then,

[𝑁]𝛽
𝛽
=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


Example 24.2
Let 𝑉 = F6 and 𝑁 = L(𝑉) such that 𝑁 (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (0, 𝑧1, 𝑧2, 0, 𝑧4, 0). In other words,

[𝑁]𝑒𝑒 =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0


Let 𝑣1 = 𝑒1, 𝑣2 = 𝑒4, 𝑣3 = 𝑒6 and define the basis 𝛽 = 𝑁2𝑣1, 𝑁𝑣1, 𝑣1, 𝑁𝑣2, 𝑣2, 𝑣3. Then,

[𝑁]𝛽
𝛽
=



0 1 0
0 0 1
0 0 0

0 1
0 0

0


Theorem 24.1
Suppose 𝑁 ∈ L(𝑉) is nilpotent. Then, there are vectors 𝑣1, . . . , 𝑣𝑛 ∈ 𝑉 and nonnegative integers 𝑚1, . . . , 𝑚𝑛 such that

1. 𝑁𝑚1𝑣1, . . . , 𝑁𝑣1, 𝑣1, . . . , 𝑁
𝑚𝑛𝑣𝑛, . . . , 𝑁𝑣𝑛, 𝑣𝑛 is a basis of 𝑉

2. 𝑁𝑚1+1𝑣1 = · · · = 𝑁𝑚𝑛+1𝑣𝑛 = 0

Proof: We will prove this theorem by induction on dim𝑉 . The dim𝑉 = 1 case is trivial as 𝑁 is the 0 operator. The induction
hypothesis states that the desired result holds on all vector spaces of dimension less than dim𝑉 .
Since 𝑁 is nilpotent, 𝑁 is not injective and, hence, not surjective. Then, either 𝑁 is the 0 operator or we can apply the induction
hypothesis to 𝑁 |range(𝑁 ) ∈ L(range(𝑁)) so that there are vectors 𝑣1, . . . , 𝑣𝑛 ∈ range(𝑁) and nonnegative integers 𝑚1, . . . , 𝑚𝑛

such that
𝑁𝑚1𝑣1, . . . , 𝑁𝑣1, 𝑣1, . . . , 𝑁

𝑚𝑛𝑣𝑛, . . . , 𝑁𝑣𝑛, 𝑣𝑛
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is a basis of range(𝑁) and
𝑁𝑚1+1𝑣1 = · · · = 𝑁𝑚𝑛+1𝑣𝑛 = 0

As each 𝑣 𝑗 ∈ range(𝑁), for each 𝑗 , there is a 𝑢 𝑗 ∈ 𝑉 with 𝑣 𝑗 = 𝑁𝑢 𝑗 . Thus, 𝑁 𝑘+1𝑢 𝑗 = 𝑁 𝑘𝑣 𝑗 for each 𝑗 and 𝑘 . We claim that
the list

𝑁𝑚1+1𝑢1, . . . , 𝑁𝑢1, 𝑢1, . . . , 𝑁
𝑚𝑛+1𝑢𝑛, . . . , 𝑁𝑢𝑛, 𝑢𝑛

is linearly independent. Suppose a linear combination of these vectors is equal to 0. Apply 𝑁 to both sides. This re-
sults in a linear combination of 𝑁𝑚1𝑣1, . . . , 𝑁𝑣1, 𝑣1, . . . , 𝑁

𝑚𝑛𝑣𝑛, . . . , 𝑁𝑣𝑛, 𝑣𝑛 that equals 0 (actually it would also contain
the 𝑁𝑚1+1𝑣1, . . . , 𝑁𝑚𝑛+1𝑣𝑛 terms but those are all already 0). However, this list is linearly independent because of the
induction hypothesis. So, all of the coefficients in the linear combination above must be 0. Then, all coefficients in the
linear combination of 𝑁𝑚1+1𝑢1, . . . , 𝑁𝑢1, 𝑢1, . . . , 𝑁𝑚𝑛+1𝑢1 except for possibly those of 𝑁𝑚1+1𝑢1, . . . , 𝑁𝑚𝑛+1𝑢𝑛 are 0 (because
𝑁𝑚1+1𝑣1, . . . , 𝑁𝑚𝑛+1𝑣𝑛 are 0 and can essentially be multiplied with any constant). However, 𝑁𝑚1𝑣1, . . . , 𝑁

𝑚𝑛𝑣𝑛 are linearly
independent as well, so those coefficients must be 0 too. Thus, the list of vectors mentioned above will all be linearly independent
as claimed.
So, we extend this list to a basis 𝑁𝑚1+1𝑢1, 𝑁𝑚1𝑢1, . . . , 𝑁𝑢1, 𝑢1, . . . , 𝑁

𝑚𝑛+1𝑢𝑛, 𝑁𝑚𝑛𝑢𝑛, . . . , 𝑁𝑢𝑛, 𝑢𝑛, 𝑤1, . . . , 𝑤𝑝 of 𝑉 . Each
𝑁𝑤 𝑗 is in range(𝑁), so they are in the span of 𝑁𝑚1𝑣1, . . . , 𝑁𝑣1, 𝑣1, . . . , 𝑁

𝑚𝑛𝑣𝑛, . . . , 𝑁𝑣𝑛, 𝑣𝑛. All of the vectors in that
list are a result of applying 𝑁 to some subset of vectors in 𝑁𝑚1+1𝑢1, . . . , 𝑁𝑢1, 𝑢1, . . . , 𝑁𝑚𝑛+1𝑢𝑛, . . . , 𝑁𝑢𝑛, 𝑢𝑛 so there is an
𝑥 𝑗 ∈ span(𝑁𝑚1+1𝑣1, . . . , 𝑁𝑣1, 𝑣1, . . . , 𝑁

𝑚𝑛+1𝑣𝑛, . . . , 𝑁𝑣𝑛, 𝑣𝑛) such that 𝑁𝑤 𝑗 = 𝑁𝑥 𝑗 . Let 𝑢𝑛+ 𝑗 = 𝑤 𝑗−𝑥 𝑗 . Then, 𝑁𝑢𝑛+ 𝑗 = 0 and
𝑁𝑚1+1𝑢1, . . . , 𝑁𝑢1, 𝑢1, . . . , 𝑁𝑚𝑛+1𝑢𝑛, . . . , 𝑁𝑢𝑛, 𝑢𝑛, 𝑢𝑛+1, . . . , 𝑢𝑛+𝑝 spans𝑉 because it contains each 𝑥 𝑗 and 𝑢𝑛+ 𝑗 (so essentially
each 𝑤 𝑗 ). However, we have a spanning list of length equal to the extended basis given above. This is clearly a basis too and it
also has the required form.

Definition 24.1: Jordan Basis
Suppose 𝑇 ∈ L(𝑉). A basis of𝑉 is called a Jordan basis for 𝑇 if, with respect to this basis, 𝑇 has a block diagonal matrix
representation 

𝐴1

𝐴2

. . .

𝐴𝑝


where each 𝐴 𝑗 (a “Jordan block”) is an upper-triangular matrix of the form

_ 𝑗 1

_ 𝑗

. . .

. . .
. . .

_ 𝑗 1
_ 𝑗


There are _ 𝑗s on the diagonal and 1s on the “super-diagonal” while everything else is 0.

Theorem 24.2
Let 𝑉 be a complex vector space. If 𝑇 ∈ L(𝑉), then there is a Jordan basis for 𝑇 .

Proof: Let 𝑉 = 𝐺 (_1, 𝑇) ⊕ · · · ⊕ 𝐺 (_𝑚, 𝑇) where _1, . . . , _𝑚 are the distinct eigenvalues of 𝑇 . Then, 𝑁 𝑗 = (𝑇 − _ 𝑗 𝐼) |𝐺 (_ 𝑗 ,𝑇 )
is nilpotent and each 𝐺 (_ 𝑗 , 𝑇) has a basis 𝛽 𝑗 of the type asserted in the theorem above. The matrix representation of a single
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Jordan block with respect to such a basis will look like

[
𝑁 𝑗

]𝛽 𝑗

𝛽 𝑗
=

𝑁
𝑚 𝑗+1
𝑗

𝑣 𝑗 𝑁
𝑚 𝑗

𝑗
𝑣 𝑗 . . . 𝑁 𝑗𝑣 𝑗


0 1 𝑁

𝑚 𝑗

𝑗
𝑣 𝑗

. . .
. . .

...

. . . 1 𝑁 𝑗𝑣 𝑗

0 𝑣 𝑗

Thus, 𝑇 |𝐺 (_ 𝑗 ,𝑇 ) = _ 𝑗 𝐼 |𝐺 (_ 𝑗 ,𝑇 ) + (𝑇 − _ 𝑗 𝐼) |𝐺 (_ 𝑗 ,𝑇 ) has matrix representation given by



_ 𝑗

_ 𝑗

. . .

_ 𝑗

_ 𝑗


+



0 1

0
. . .

. . .
. . .

0 1
0


=



_ 𝑗 1

_ 𝑗

. . .

. . .
. . .

_ 𝑗 1
_ 𝑗


with respect to this basis 𝛽 𝑗 . Collate all the 𝛽1, . . . , 𝛽𝑚 to obtain the Jordan basis for 𝑇 .

Example 24.3: 8D Exercise 1
Consider 𝑁 (𝑧1, 𝑧2, 𝑧3, 𝑧4) = (0, 𝑧1, 𝑧2, 𝑧3). Then, as we showed in example 24.1,

𝑁4𝑣 𝑁3𝑣 𝑁2𝑣 𝑁𝑣


0 1 0 0 𝑁3𝑣

0 0 1 0 𝑁2𝑣

0 0 0 1 𝑁𝑣

0 0 0 0 𝑣

Note that 𝑐𝑁 (𝑧) = 𝑧4 since dim𝐺 (0, 𝑁) = 4. Observe that 𝑁4𝑣 = 0 but 𝑁3𝑣 ≠ 0 and 𝑁3𝑣, 𝑁2𝑣, 𝑁𝑣, 𝑣 form a basis of
F4. Thus, 𝑁4 = 0 and 𝑁3 ≠ 0, so 𝑧4 is also the minimal polynomial of 𝑁 .

Example 24.4: 8D Exercise 2
Consider 𝑁 = L(𝑉) such that 𝑁 (𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6) = (0, 𝑧1, 𝑧2, 0, 𝑧4, 0) from example 24.2. Let 𝑣1 = 𝑒1, 𝑣2 = 𝑒4,
𝑣3 = 𝑒6 and define the basis 𝛽 = 𝑁2𝑣1, 𝑁𝑣1, 𝑣1, 𝑁𝑣2, 𝑣2, 𝑣3. Then,

[𝑁]𝛽
𝛽
=



0 1 0
0 0 1
0 0 0

0 1
0 0

0


Since 𝑁3𝑣1 = 0, 𝑁2𝑣2 = 0 and 𝑁𝑣3 = 0, the minimal polynomial of 𝑁 is 𝑧3. However, the characteristic polynomial of
𝑁 is 𝑧6 since dim𝐺 (0, 𝑇) = 6.

Example 24.5: 8D Exercise 3
Let 𝑁 ∈ L(𝑉) be nilpotent. The minimal polynomial of 𝑁 is 𝑧𝑚+1 where 𝑚 is the length of the largest string of
consecutive 1s that appear on the super-diagonal in any Jordan form matrix representation of 𝑁 .
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Example 24.6
Suppose 𝑇 has the matrix representation, with respect to its Jordan basis, given by

3 1 0
0 3 1
0 0 3

3 1
0 3

6 1 0 0
0 6 1 0
0 0 6 1
0 0 0 6


Then, 𝑇 has two Jordan blocks for eigenvalue _ = 3 and one for eigenvalue _ = 6. The sum of the sizes of the Jordan
blocks for eigenvalue _ is the algebraic multiplicity of _, i.e., dim𝐺 (_, 𝑇). The minimal polynomial of 𝑇 has a _

root with multiplicity equal to the size of the largest Jordan block for _. Therefore, the minimal polynomial of 𝑇 is
(𝑧 − 3)3 (𝑧 − 6)4 while the characteristic polynomial is (𝑧 − 3)5 (𝑧 − 6)4.

Example 24.7
Note, however, that a characteristic polynomial and minimal polynomial are not enough to uniquely determine the Jordan
form of 𝑇 . The following matrix representation has the same characteristic and minimal polynomial as the example
above: 

3 1 0
0 3 1
0 0 3

3
3

6 1 0 0
0 6 1 0
0 0 6 1
0 0 0 6


Example 24.8: 8D Exercise 4
Suppose 𝑇 ∈ L(𝑉) and 𝑣1, . . . , 𝑣𝑛 is a Jordan basis for 𝑇 . Describe the matrix with respect to basis 𝑣𝑛, . . . , 𝑣1 obtained
by reversing the order of 𝑣 𝑗s. Let 𝑇 be such that it has the following as the possible Jordan form matrix representation:

3 1 0
0 3 1
0 0 3

3
2 1
0 2


Then, reversing the basis will yield 

2 0
1 2

3
3 0 0
1 3 0
0 1 3



Linear Algebra 108



Math 110, Summer 2021 Notes Aryan Jain

Example 24.9: 8D Exercise 5
Let 𝑇 ∈ L(𝑉) and let 𝑣1, . . . , 𝑣𝑛 be Jordan basis for 𝑇 . What is the matrix representation of 𝑇2 for this basis? Here is
what the single block case looks like: [

_
] [
_
]
=

[
_2

][
_ 1
0 _

] [
_ 1
0 _

]
=

[
_2 2_
0 _2

]

_ 1 0
0 _ 1
0 0 _



_ 1 0
0 _ 1
0 0 _

 =


_2 2_ 0
0 _2 2_
0 0 _2


_ 1 0 0
0 _ 1 0
0 0 _ 1
0 0 0 _



_ 1 0 0
0 _ 1 0
0 0 _ 1
0 0 0 _

 =


_2 2_ 0 0
0 _2 2_ 0
0 0 _2 2_
0 0 0 _2


This pattern continues for Jordan blocks of any size. For the general case, one can find the representation of each Jordan
block separately and assemble them at the end.

Example 24.10
Suppose that 𝑇 ∈ L(𝑉) is invertible. Prove that there is a polynomial 𝑝 ∈ P (F) such that 𝑇−1 = 𝑝(𝑇).

Proof: Let 𝑧𝑚 + 𝑎𝑚−1𝑧𝑚−1 + · · · + 𝑎1𝑧 + 𝑎0 be the minimal polynomial of 𝑇 . So, 𝑇𝑚 + 𝑎𝑚−1𝑇𝑚−1 + · · · + 𝑎1𝑇 + 𝑎0𝐼 =

0 =⇒ 𝑎0𝐼 = −𝑇𝑚 − 𝑎𝑚−1𝑇𝑚−1 − · · · − 𝑎1𝑇 . Since 𝑇 is invertible, 𝑎0 ≠ 0 so

𝑇−1 = 𝑎0𝐼
𝑇−1

𝑎0

= −𝑇
𝑚−1

𝑎0
− 𝑎𝑚−1

𝑎0
𝑇𝑚−2 − · · · − 𝑎1

𝑎0
𝐼
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25 Lecture 25

25.1 Jordan Forms Cont.

In general, the knowledge of all the eigenvalues of 𝑇 and the dimensions of ker(𝑇 −_ 𝑗 𝐼)𝑘 for each eigenvalue _ 𝑗 and each 𝑘 ≥ 1
is necessary to determine the Jordan form of 𝑇 .

Theorem 25.1
Let 𝑇 ∈ L(𝑉). If 𝑇 has a Jordan basis and _ is an eigenvalue of 𝑇 , then the number of _ eigenvalue Jordan blocks of 𝑇 of
size at least 𝑘 is exactly dimker(𝑇 − _𝐼)𝑘 − dimker(𝑇 − _𝐼)𝑘−1. Thus, the number of Jordan blocks for the eigenvalue
_ of size exactly 𝑘 is exactly

dimker(𝑇 − _𝐼)𝑘+1 − 2 dimker(𝑇 − _𝐼)𝑘 + dimker(𝑇 − _𝐼)𝑘−1

and the number of Jordan blocks of 𝑇 for _ is the geometric multiplicity dimker(𝑇 − _), i.e., dim 𝐸 (_, 𝑇).

Example 25.1
Let 𝑉 = C4 and 𝑇 ∈ L(C4). Let _ be the only eigenvalue of 𝑇 with Jordan basis 𝑁3𝑣, 𝑁2𝑣, 𝑁𝑣, 𝑣 where 𝑁 = 𝑇 − _𝐼.
The Jordan form of 𝑇 is 

_ 1
_ 1

_ 1
_


The nilpotent operator 𝑇 − _𝐼 has the matrix representation

0 1
0 1

0 1
0


with respect to the given Jordan basis.

• Since 𝑁4𝑣 = 0, the list 𝑁3𝑣, 𝑁2𝑣, 𝑁𝑣, 𝑣 is a basis of ker(𝑇 − _𝐼)4 = ker(𝑇 − _𝐼)5 = ker(𝑇 − _𝐼)6 = . . . and
dimker(𝑇 − _𝐼)4 = 4.

• Again, as 𝑁4𝑣 = 0 but 𝑁3𝑣 ≠ 0, we have that 𝑁3𝑣, 𝑁2𝑣, 𝑁𝑣 is a basis of ker(𝑇 − _𝐼)3 (since 𝑁3 (𝑁𝑣) = 𝑁4𝑣 = 0,
𝑁3 (𝑁2𝑣) = 𝑁5𝑣 = 0 and 𝑁3 (𝑁3𝑣) = 𝑁6𝑣 = 0) and dimker(𝑇 − _𝐼)3 = 3.

• Similarly, 𝑁3𝑣, 𝑁2𝑣 is a basis of ker(𝑇 − _𝐼)2 (same logic as before) and dimker(𝑇 − _𝐼)2 = 2.

• Finally, 𝑁3𝑣 is a basis of ker(𝑇 − _𝐼) = 𝐸 (_, 𝑇) and dimker(𝑇 − _𝑇) = 1.

The proof is that if we restrict our attention to the sequence of subspaces ker(𝑇 − _𝐼) ⊂ ker(𝑇 − _𝐼)2 ⊂ ker(𝑇 − _𝐼)3 ⊂ . . . ,
where 𝑇 has a single Jordan block for the eigenvalue _, say of size 𝑙, then we must have

dimker(𝑇 − _𝐼)1 = 1

dimker(𝑇 − _𝐼)2 = 2

dimker(𝑇 − _𝐼)3 = 3

...

dimker(𝑇 − _𝐼)𝑙 = 𝑙

dimker(𝑇 − _𝐼)𝑙+1 = 𝑙

...
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So, if 𝑘 ≤ 𝑙, then dimker(𝑇 −_𝐼)𝑘 −dimker(𝑇 −_𝐼)𝑘−1 = 1, which is exactly the number of Jordan blocks of 𝑇 for eigenvalues
_ of size at least 𝑘 . If 𝑘 ≥ 𝑙 + 1, then dimker(𝑇 − _𝐼)𝑘 − dimker(𝑇 − _𝐼)𝑘−1 = 𝑘 − 𝑘 = 0 so that checks out as well.
This establishes the theorem for the case in which 𝑇 has a single Jordan block for the eigenvalue _. Suppose, instead, that 𝑇 has
Jordan basis say, 𝑁3𝑣1, 𝑁

2𝑣1, 𝑁𝑣1, 𝑣1, 𝑁𝑣2, 𝑣2 where 𝑁 = 𝑇 − _𝐼. In other words, 𝑁 has the Jordan form

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

0 1
0 0


By the same logic as before (𝑁4𝑣1 = 0, 𝑁3𝑣1 ≠ 0, 𝑁2𝑣2 = 0, 𝑁𝑣2 ≠ 0),

ker(𝑇 − _𝐼)1 = span(𝑁3𝑣1, 𝑁𝑣2)
ker(𝑇 − _𝐼)2 = span(𝑁3𝑣1, 𝑁

2𝑣1, 𝑁𝑣2, 𝑣2)
ker(𝑇 − _𝐼)3 = span(𝑁3𝑣1, 𝑁

2𝑣1, 𝑁𝑣1, 𝑁𝑣2, 𝑣2)
ker(𝑇 − _𝐼)4 = span(𝑁3𝑣1, 𝑁

2𝑣1, 𝑁𝑣1, 𝑣1, 𝑁𝑣2, 𝑣2)
ker(𝑇 − _𝐼)5 = span(𝑁3𝑣1, 𝑁

2𝑣1, 𝑁𝑣1, 𝑣1, 𝑁𝑣2, 𝑣2)
...

and the number of Jordan blocks of size at least 𝑘 for the eigenvalue _ is dimker(𝑇 − _𝐼)𝑘 − dimker(𝑇 − _𝐼)𝑘−1 (which can
be confirmed from the matrix above). It isn’t hard to turn this into a formal completely general proof of the theorem.

Example 25.2
Suppose 𝑇 ∈ L(C9) has eigenvalues 3 and 6 and dim(𝑇 − 3𝐼)3 = 5, dim(𝑇 − 3𝐼) = 3, dim(𝑇 − 6𝐼)4 = 4. Is the Jordan
form of 𝑇 completely determined by this information? What are the characteristic and minimal polynomials of 𝑇?

As dim 𝐸 (3, 𝑇) = dimker(𝑇 −3𝐼) = 3, the operator 𝑇 has exactly three Jordan blocks for the eigenvalue _ = 3. The
algebraic multiplicity (sum of the size of all Jordan blocks) of _ = 3 is at least 5 since dimker(𝑇 − 3𝐼)3 = 5. Similarly,
the algebraic multiplicity of _ = 6 is at least 4. However, 9 = 5 + 4 so the algebraic multiplicities of _ = 3 and _ = 6 are
exactly 5 and 4 respectively. Then, the characteristic polynomial of 𝑇 is 𝑐𝑇 (𝑧) = (𝑧 − 3)5 (𝑧 − 6)4.

Thus, we either have one Jordan block of size 3 and two of size 1, or two of size 2 and one of size 1 for _ = 3. On
the other hand, we either have four Jordan blocks of size 1, one of size 2 and two of size 1, two of size 2, one of size 3
and one of size 1, or one of size 4 for _ = 6. This information is not enough to determine the minimal polynomial of 𝑇
though 𝑚𝑇 (𝑧) is one of the following:

• (𝑧 − 3)3 (𝑧 − 6)4

• (𝑧 − 3)3 (𝑧 − 6)3

• (𝑧 − 3)3 (𝑧 − 6)2

• (𝑧 − 3)3 (𝑧 − 6)

Example 25.3
Let 𝑉 be a complex vector space of dimension 8 and 𝑇 ∈ L(𝑉) such that 3,−1 are its two eigenvalues. Suppose
dimker(𝑇 − 3𝐼) = 3, dimker(𝑇 + 𝐼) = 2, dimker(𝑇 − 3𝐼)2 = 4 and dimker(𝑇 + 𝐼)2 = 4. What can we say about the
Jordan form of 𝑇?

Sincedimker(𝑇−3𝐼) = 3, there are three Jordan blocks for_ = 3. Asdimker(𝑇−3𝐼)2−dimker(𝑇−3𝐼) = 4−3 = 1,
two of the Jordan blocks for _ = 3 must be 1 × 1 and the last one should be 2 × 2 or greater.

Now, as dimker(𝑇 + 𝐼) = 2 and dimker(𝑇 + 𝐼)2 − dimker(𝑇 + 𝐼) = 4 − 2 = 2, there are two Jordan blocks for
_ = −1 and both are at least 2 × 2.
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The only way this is possible is if there are two 1 × 1 Jordan blocks for _ = 3, one 2 × 2 Jordan block for _ = 3 and
two 2 × 2 Jordan blocks for _ = −1. Thus, the Jordan form of 𝑇 (up to some rearrangement of the blocks) is

3 1
0 3

3
3

−1 1
0 −1

−1 1
0 −1


Thus, we have 𝑐𝑇 (𝑧) = (𝑧 − 3)4 (𝑧 + 1)4 and 𝑚𝑇 (𝑧) = (𝑧 − 3)2 (𝑧 + 1)2.

Note 25.1
If 𝑉 is a complex finite-dimensional vector space, the Jordan form is a complete similarity invariant, i.e., if 𝑇, 𝑆 ∈ L(𝑉),
then there is an isomorphism 𝑈 ∈ L(𝑉) such that 𝑆 = 𝑈−1 ◦𝑇 ◦𝑈 iff 𝑇 and 𝑆 have the same Jordan form. At the matrix
level, 𝐴, 𝐵 ∈ M𝑛 (C) are similar iff 𝐴 and 𝐵 have the same Jordan form.

25.2 Complexification
25.2.1 Motivation

Example 25.4

Let 𝐴 =

[
0.5 −0.6

0.75 1.1

]
. Moreover, let 𝑥0 be an arbitrary point like

[
2
0

]
. Let’s analyze the following sequence:

𝑥1 = 𝐴𝑥0 =

[
0.5 −0.6

0.75 1.1

] [
2
0

]
=

[
1.0
1.5

]
𝑥2 = 𝐴𝑥1 =

[
0.5 −0.6
0.75 1.1

] [
1.0
1.5

]
=

[
−0.4
2.4

]
𝑥3 = 𝐴𝑥2 = . . .

𝑥4 = 𝐴𝑥3 = . . .

...

𝑥𝑛 = 𝐴𝑥𝑛−1 = 𝐴𝑛𝑥0

The sequence 𝑥0, 𝑥1, . . . lies along an elliptical orbit. Why the rotation? What is going on here?

Definition 25.1: Real and Imaginary Components of a Vector
For any 𝑣 ∈ C𝑛, define

Re(𝑣) =

Re(𝑣1)

...

Re(𝑣𝑛)


Im(𝑣) =


Im(𝑣1)

...

Im(𝑣𝑛)


So, 𝑣 = Re(𝑣) + Im(𝑣). We similarly define the conjugate of 𝑣 as 𝑣 = Re(𝑣) − Im(𝑣).
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Theorem 25.2
Suppose 𝐴 ∈ M2 (R). View 𝐴 as a part of M2 (C). Suppose 𝐴 has a complex eigenvalue _ = 𝑎 − 𝑖𝑏 with 𝑏 ≠ 0 and the
corresponding _-eigenvector 𝑣 of 𝐴 in C2. Then, 𝐵 = 𝑆−1𝐴𝑆 where

𝑆 =
[
Re(𝑣) Im(𝑣)

]
𝐵 =

[
𝑎 −𝑏
𝑏 𝑎

]
for 𝑎, 𝑏 ∈ R. In other words, the real matrices 𝐴 and 𝐵 are similar over R via the real matrix 𝑆.

Proof: Look at 𝐴𝑆:

𝐴
[
Re(𝑣) Im(𝑣)

]
=

[
𝐴Re(𝑣) 𝐴 Im(𝑣)

]
=

[
Re(𝐴𝑣) Im(𝐴𝑣)

]
=

[
Re(_𝑣) Im(_𝑣)

]
and compare it to 𝑆𝐵: [

Re(𝑣) Im(𝑣)
] [𝑎 −𝑏
𝑏 𝑎

]
=

[
𝑎Re(𝑣) + 𝑏 Im(𝑣) −𝑏Re(𝑣) + 𝑎 Im(𝑣)

]
Then,

_𝑣 = (𝑎 − 𝑖𝑏) (Re(𝑣) + 𝑖 Im(𝑣))
= 𝑎Re(𝑣) + 𝑏 Im(𝑣)︸                 ︷︷                 ︸

Re(_𝑣)

+ (−𝑏Re(𝑣) + 𝑎 Im(𝑣))︸                      ︷︷                      ︸
Im(_𝑣)

𝑖

So, 𝐴𝑆 = 𝑆𝐵. Since Re(𝑣) and Im(𝑣) can easily be shown to be linearly independent via a simple proof by contradiction
oriented calculation, it follows that 𝐵 = 𝑆−1𝐴𝑆.

What is the point of this? If 𝐴 ∈ M2 (R) has some strictly complex eigenvalues _ when viewed as a matrix in M2 (C), then 𝐴

is similar to a matrix of the form given by 𝐵 (where _ = 𝑎 − 𝑖𝑏), which is just a scaled rotation matrix. In the example above,
the matrix

𝐴 =

[
0.5 −0.6

0.75 1.1

]
has a strictly complex eigenvalue _ = 𝑎 − 𝑖𝑏. This explains why the trajectory of a point/vector under iterates of 𝐴 will form an
elliptical orbit.
If 𝐴 is already the same form as 𝐵, the trajectory would be a circle. However, because the change of basis matrix 𝑆 takes the
standard basis to a non-orthogonal/non-rectangular basis, we uncover the elliptical distortion of the circle. In the example above,
this turns out to be

_ = 0.8 − 0.6𝑖

𝑣 =

[
−2 − 4𝑖

5

]
𝑆 =

[
−2 −4
5 0

]
25.2.2 Complexification

We already worked with the concept of complexification during the proof of the real spectral theorem. We will cover it in more
detail now.
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Definition 25.2: Complexification
Let𝑉 be a real vector space. Then𝑉C is the complexification of𝑉 and has an underlying given by𝑉 ×𝑉 =

{
(𝑢, 𝑣) ∈ 𝑉2

}
.

However, we denote (𝑢, 𝑣) by the formal expression 𝑢 + 𝑖𝑣. Vector addition in 𝑉C is defined by

(𝑢1 + 𝑖𝑣1) + (𝑢2 + 𝑖𝑣2) = (𝑢1 + 𝑢2) + 𝑖(𝑣1 + 𝑣2)

and complex scalar multiplication is defined by

(𝑎 + 𝑖𝑏) (𝑢 + 𝑖𝑣) = (𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢)

for 𝑎, 𝑏 ∈ R and 𝑢, 𝑣 ∈ 𝑉 .

Theorem 25.3
Let 𝑉 be a real vector space. If 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉 (as a real vector space), then 𝑣1, . . . , 𝑣𝑛 is a basis of 𝑉C (as
a complex vector space). Thus, dimC (𝑉C) = dimR (𝑉). It immediately also follows that 𝑉 = R𝑛 =⇒ 𝑉C � C

𝑛 so we
identify the complexification of R𝑛 with C𝑛.

Definition 25.3
Let 𝑉 be a real vector space and 𝑇 ∈ L(𝑉). Then, 𝑇C ∈ L(𝑉C) is defined by 𝑇C (𝑢 + 𝑖𝑣) = 𝑇𝑢 + 𝑖𝑇𝑣 for all 𝑢, 𝑣 ∈ 𝑉 .

Definition 25.4
Let 𝑉 be a real vector space with basis 𝛽 = 𝑣1, . . . , 𝑣𝑛 and 𝑇 ∈ L(𝑉). Then, [𝑇C]𝛽𝛽 = [𝑇]𝛽

𝛽
.

Theorem 25.4
Every operator has an invariant subspace of dimension 1 or 2.

Proof: Every operator on a non-zero finite-dimensional complex vector space has an eigenvalue and, thus, a 𝑇-invariant 1-
dimensional subspace. Now suppose 𝑇 ∈ L(𝑉) where 𝑉 is real and that 𝑇C has an eigenvalue _ = 𝑎 + 𝑖𝑏 with eigenvector 𝑢 + 𝑖𝑣
(and at least one of 𝑢 or 𝑣 nonzero). In other words,

𝑇C (𝑢 + 𝑖𝑣) = (𝑎 + 𝑖𝑏) (𝑢 + 𝑖𝑣)
𝑇𝑢 + 𝑖𝑇𝑣 = (𝑎𝑢 − 𝑏𝑣) + 𝑖(𝑎𝑣 + 𝑏𝑢)

So, 𝑇𝑢 = 𝑎𝑢 − 𝑏𝑣 and 𝑇𝑣 = 𝑎𝑣 + 𝑏𝑢. Let 𝑈 = span(𝑢, 𝑣). Then, 𝑈 is a 𝑇-invariant subspace of 𝑉 of dimension 1 (for real
eigenvalues) or 2 (for complex eigenvalues).

Theorem 25.5
Let 𝑉 be a real vector space and 𝑇 ∈ L(𝑉). Then, the minimal polynomial of 𝑇C equals the minimal polynomial of 𝑇 .

Theorem 25.6
Let 𝑉 be a real vector space and 𝑇 ∈ L(𝑉) with _ ∈ R. Then, _ is an eigenvalue of 𝑇C iff _ is an eigenvalue of 𝑇 .

Theorem 25.7
Let 𝑉 be a real vector space, 𝑇 ∈ L(𝑉) and 𝑗 ≥ 1, 𝑢, 𝑣 ∈ 𝑉 . Then (𝑇C − _𝐼) 𝑗 (𝑢 + 𝑖𝑣) = 0 iff (𝑇C − _ 𝐼) 𝑗 (𝑢 − 𝑖𝑣) = 0.
In other words, if 𝑤 is a _-eigenvector of 𝑇C, then 𝑤 is a _-eigenvector of 𝑇C. So, non-real eigenvalues of 𝑇C come in
conjugate pairs.
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Theorem 25.8
Let 𝑉 be a real vector space, 𝑇 ∈ L(𝑉) and _ an eigenvalue of 𝑇C. Then, the algebraic multiplicity of _ as an eigenvalue
of 𝑇C equals the algebraic multiplicity of _ as an eigenvalue of 𝑇C.

Theorem 25.9
Let 𝑉 be a real odd-dimensional vector space and 𝑇 ∈ L(𝑉). Then, 𝑇 has an eigenvalue.

Proof: Complex eigenvalues of 𝑇C come in conjugate pairs with the same algebraic multiplicities. Thus, the sum of the
multiplicities of all truly complex eigenvalues is even. So if dim𝑉C is odd, then 𝑇C must have a real eigenvalue, which must be
a real eigenvalue of 𝑇 as well.

Theorem 25.10
Let 𝑉 be a real vector space and 𝑇 ∈ L(𝑉). Then, the coefficients of the characteristic polynomial of 𝑇C are all real.

This justifies the following definition:

Definition 25.5: Characteristic Polynomial
Let 𝑇 ∈ L(𝑉) where 𝑉 is a real vector space. The characteristic polynomial 𝑐𝑇 (𝑧) of 𝑇 is defined to be the same as the
characteristic polynomial 𝑐𝑇C (𝑧) of 𝑇C.

Theorem 25.11: Cayley-Hamilton Theorem
Let 𝑉 be a real vector space and 𝑇 ∈ L(𝑉). If 𝑐𝑇 (𝑧) is the characteristic polynomial of 𝑇 , then 𝑐𝑇 (𝑇) = 0.
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26 Lecture 26

26.1 Real Normal Operators

Last time, we proved the following theorem:

Theorem 26.1
Let 𝐴 ∈ M2 (R). Suppose 𝐴C has a truly complex eigenvalue _ = 𝑎 + 𝑖𝑏 (where 𝑏 ≠ 0) and 𝑣 ∈ C2 is a _-eigenvector
of 𝐴. Then, 𝐵 = 𝑆𝐴𝑆−1 where

𝐵 =

[
𝑎 −𝑏
𝑏 𝑎

]
𝑆 =

[
Re(𝑣) Im(𝑣)

]
The proof of this theorem relied on the fact that Re(𝑣) and Im(𝑣) are necessarily linearly independent, given the hypothesis.
We will prove that fact right now.

Proof: First, write 𝑣 = 𝑥 + 𝑖𝑦 such that Re(𝑣) = 𝑥 and Im(𝑣) = 𝑦. Note that 𝑦 = 0 is impossible. If it was indeed possible,
then 𝐴C𝑣 = 𝐴𝑥 is real, but _𝑥 is not (𝑦 = 0 =⇒ 𝑥 ≠ 0 since 𝑥 is an eigenvector of 𝐴C). Now, we claim that 𝑥 = 0 is
impossible. If it was indeed possible, then 𝐴C𝑣 = 𝐴(𝑖𝑦) = 𝑖𝐴𝑦 which is purely imaginary as 𝐴 and 𝑦 are real. However,
𝐴C (𝑣) = (𝑎 + 𝑖𝑏) (𝑖𝑦) = −𝑏𝑦 + 𝑎𝑖𝑦 but 𝑏 ≠ 0 so 𝐴C𝑣 has a real component. Thus, the real and imaginary parts of 𝑣 are both
nonzero.
We now claim that 𝑣 = 𝑥 + 𝑖𝑦 and 𝑣 = 𝑥 − 𝑖𝑦 are linearly independent over C under the given hypothesis. Suppose 𝑐1𝑣 + 𝑐2 𝑣 =

0 =⇒ 𝑐1 (𝑥 + 𝑖𝑦) + 𝑐2 (𝑥 − 𝑖𝑦) = 0 =⇒ (𝑐1 + 𝑐2)𝑥 + 𝑖(𝑐1 − 𝑐2)𝑦 = 0 =⇒ (𝑐1 + 𝑐2)𝑥 = 0 and (𝑐1 − 𝑐2)𝑦 = 0. However, since
𝑥 ≠ 0 and 𝑦 ≠ 0, we get the system 𝑐1 + 𝑐2 = 0 and 𝑐1 − 𝑐2 = 0. These equations imply 𝑐1 = 𝑐2 = 0 so 𝑣 and 𝑣 are linearly
independent over C. However, note that

𝑥 =
𝑣 + 𝑣

2

𝑦 =
𝑣 − 𝑣

2𝑖

Suppose there are constants 𝑏1, 𝑏2 such that 𝑏1𝑥 + 𝑏2𝑦 = 0. Then,

0 = 𝑏1𝑥 + 𝑏2𝑦

= 𝑏1

(
𝑣 + 𝑣

2

)
+ 𝑏2

(
𝑣 − 𝑣

2𝑖

)
=

(
𝑏1

2
+ 𝑏2

2𝑖

)
𝑣 +

(
𝑏1

2
− 𝑏2

2𝑖

)
𝑣

Again, this implies that 𝑏1 = 𝑏2 = 0 so 𝑥 = Re(𝑣) and 𝑦 = Im(𝑣) are linearly independent as expected.

Here is a somewhat faster version of the proof above: under the given hypothesis, 𝑣 is a _-eigenvector of 𝐴C and 𝑣 is a
_-eigenvector of 𝐴C. As _ ≠ _ (the imaginary component is non-zero), then 𝑣 and 𝑣 are eigenvectors of distinct eigenvalues
and, thus, linearly independent over C. The same calculation follows as before, which shows that Re(𝑣) and Im(𝑣) are linearly
independent as well.

Theorem 26.2
Let 𝑉 be a two-dimensional real inner product space and 𝑇 ∈ L(𝑉). Then, the following are equivalent:

1. 𝑇 is normal but not self-adjoint

2. The matrix representation of 𝑇 with respect to every orthonormal basis of 𝑉 is[
𝑎 −𝑏
𝑏 𝑎

]
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with 𝑏 ≠ 0.

3. The matrix representation of 𝑇 with respect to some orthonormal basis of 𝑉 is[
𝑎 −𝑏
𝑏 𝑎

]
with 𝑏 ≠ 0.

Proof: Recall that if 𝑉 is a real inner product space with inner product ⟨·, ·⟩, then

⟨𝑢 + 𝑖𝑣, 𝑥 + 𝑖𝑦⟩ = ⟨𝑢, 𝑥⟩ + ⟨𝑣, 𝑦⟩ + (⟨𝑣, 𝑥⟩ − ⟨𝑢, 𝑦⟩)𝑖

defines a complex inner product on 𝑉C. Moreover, if 𝑇 ∈ L(𝑉) is self-adjoint for ⟨·, ·⟩, then 𝑇C is self-adjoint for ⟨·, ·⟩C. If 𝑇 is
normal for ⟨·, ·⟩, then 𝑇C is normal for ⟨·, ·⟩C. Let’s prove some statements now:

• statement 1 =⇒ statement 3
As 𝑇C is normal but not self-adjoint, by the spectral theorem and the fact that truly complex eigenvalues of 𝑇C come in
conjugate pairs, we know that 𝑇C is orthogonally diagonalizable over C as[

_

_

]
where _ = 𝑎 + 𝑖𝑏 and 𝑏 ≠ 0 for some 𝑎, 𝑏 ∈ R. We also know that if 𝑉 is a _-eigenvector of 𝑇C, then 𝑣 is a _-eigenvector
of 𝑇C and that 𝑣 and 𝑣 must be orthogonal since 𝑇 is normal. Since 𝑏 ≠ 0, the matrix representation of 𝑇 with respect to
the basis Im(𝑣),Re(𝑣) is [

𝑎 −𝑏
𝑏 𝑎

]
Now, we need to only show that Im(𝑣) and Re(𝑣) are orthogonal. If 𝑣 = 𝑥 + 𝑖𝑦, then

⟨𝑣, 𝑣⟩ = ⟨𝑥 + 𝑖𝑦, 𝑥 − 𝑖𝑦⟩ = ∥𝑥∥2 + ∥𝑦∥2 + 2𝑖Re(⟨𝑥, 𝑦⟩) = 0

Since 𝑥, 𝑦 are real, Re(⟨𝑥, 𝑦⟩) = ⟨𝑥, 𝑦⟩. The orthogonality of 𝑣, 𝑣 above forces ⟨𝑥, 𝑦⟩ = 0. Normalizing 𝑥 and 𝑦, if
necessary, won’t change the matrix representation of 𝑇 . Thus, statement 1 implies statement 3.

• statement 3 =⇒ statement 2
Suppose 𝑇 has a matrix representation [

𝑎 −𝑏
𝑏 𝑎

]
with respect to some orthonormal basis of 𝑉 given by 𝑒 = 𝑒1, 𝑒2. Then, any other orthonormal basis of 𝑉 , given by
𝑓 = 𝑓1, 𝑓2 is related to 𝑒 by an isometry, i.e., via an orthogonal change of basis of matrix. So, the matrix representation
of 𝑇 with respect to 𝑓 is

𝐵 = ( [𝑆]𝑒𝑓 )
𝑇

[
𝑎 −𝑏
𝑏 𝑎

]
[𝑆]𝑒𝑓

where 𝑆 is a 2 × 2 orthogonal matrix. However, any such 𝑆 represents either a rotation or a reflection and has the form[
cos \ − sin \
sin \ cos \

]
or

[
cos \ sin \
sin \ cos \

]
These commute with [

𝑎 −𝑏
𝑏 𝑎

]
so statement 3 implies statement 2.
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• statement 2 =⇒ statement 3
This is trivial.

• statement 3 =⇒ statement 1
If

[𝑇]𝑒𝑒 =
[
𝑎 −𝑏
𝑏 𝑎

]
with 𝑏 ≠ 0 and 𝑒 = 𝑒1, 𝑒2 is an orthonormal basis, then

[𝑇∗]𝑒𝑒 =
[

𝑎 𝑏

−𝑏 𝑎

]
Thus, 𝑇 ≠ 𝑇∗ since 𝑏 ≠ 0 so 𝑇 is not self-adjoint. However, a direct calculation also shows us that

[𝑇∗𝑇]𝑒𝑒 =
[

𝑎 𝑏

−𝑏 𝑎

] [
𝑎 −𝑏
𝑏 𝑎

]
=

[
𝑎2 + 𝑏2 0

0 𝑎2 + 𝑏2

]
=

[
𝑎 −𝑏
𝑏 𝑎

] [
𝑎 𝑏

−𝑏 𝑎

]
= [𝑇𝑇∗]𝑒𝑒

Hence, 𝑇∗𝑇 = 𝑇𝑇∗ and 𝑇 is normal.

Theorem 26.3
Let 𝑉 be a real inner product space and 𝑇 ∈ L(𝑉). Then, the following are equivalent:

1. 𝑇 is normal

2. There is an orthonormal basis of 𝑉 with respect to which 𝑇 is block diagonal, consisting of blocks that are 1 × 1
or 2 × 2 of the form [

𝑎 −𝑏
𝑏 𝑎

]
Proof: The proof that we covered in class was too confusing and verbose, and I am genuinely not sure if it was even correct or
complete in the first place. Refer to Axler for a better proof.

26.2 Real Canonical Form

Definition 26.1: Real Canonical Form
Let 𝑉 be a real vector space and 𝑇 ∈ L(𝑉). Then there is a basis of 𝑉 with respect to which the matrix of 𝑇 is block
diagonal with each block either a Jordan block for a real eigenvalue or a block of the form

𝑅 𝐼2

𝑅
. . .

. . .
. . .

𝑅 𝐼2
𝑅


where 𝑅 =

[
𝑎 −𝑏
𝑏 𝑎

]
with 𝑏 ≠ 0 and 𝐼2 =

[
1 0
0 1

]
.

Main idea: 𝑇C has a Jordan basis for which members of the generalized eigenspaces of real eigenvalues can be taken to be in 𝑉 .
If 𝑁 𝑘𝑣1, . . . , 𝑁𝑣1, 𝑣1 is a part of a Jordan basis satisfying the above for a complex eigenvalue _ = 𝑎 + 𝑖𝑏 block, then

𝑁 𝑘𝑣1 = 𝑁 𝑘 𝑣1, . . . , 𝑁𝑣1 = 𝑁 𝑣1, 𝑣1 = 𝑣1

can be taken as a part of the Jordan basis for a _ = 𝑎−𝑖𝑏 block of the same size. Replace 𝑁 𝑘𝑣1, . . . , 𝑁𝑣1, 𝑣1, 𝑁
𝑘 𝑣1, . . . , 𝑁 𝑣1, 𝑣1

with Im(𝑁 𝑘𝑣1),Re(𝑁 𝑘𝑣1), . . . , Im(𝑁𝑣1),Re(𝑁𝑣1), Im(𝑣1),Re(𝑣1) are reorder to get the real canonical form.
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For example, we might have a Jordan block 
2 + 𝑖 1

2 + 𝑖 1
2 + 𝑖


with respect to 𝑁2𝑣, 𝑁𝑣, 𝑣 for some 𝑣, where 𝑁 = (𝑇C − (2 + 𝑖)𝐼) |𝐺 (2+𝑖,𝑇C ) . Since 𝑇C = 𝑇C (as 𝑇C is only a complexification of
the real operator 𝑇), we have that 𝑁 = (𝑇C − (2 + 𝑖)𝐼) |

𝐺 (2+𝑖,𝑇C ) = 𝑇C − (2 − 𝑖)𝐼 |𝐺 (2−𝑖,𝑇C ) . Thus, there is a Jordan block
2 − 𝑖 1

2 − 𝑖 1
2 − 𝑖


with respect to 𝑁2 𝑣, 𝑁 𝑣, 𝑣.
So, with respect to Im(𝑁2𝑣),Re(𝑁2𝑣), Im(𝑁𝑣),Re(𝑁𝑣), Im(𝑣),Re(𝑣), we can combine the two Jordan blocks together to
form 

2 −1 1 0
1 2 0 1

2 −1 1 0
1 2 0 1

2 −1
1 2


for 𝑇’s matrix representation when restricted to 𝐺 (2 + 𝑖, 𝑇C) ⊕ 𝐺 (2 − 𝑖, 𝑇C).

Example 26.1: 9A Exercise 10
Give an example of a 𝑇 ∈ L(C7) such that 𝑇2 + 𝑇 + 𝐼 is nilpotent.

Answer: We choose a 𝑇 with minimal polynomial

𝑚𝑇 (𝑧) = 𝑧

(
𝑧 −

(
−1 + 𝑖

√
3

2

)) (
𝑧 −

(
−1 − 𝑖

√
3

2

))
and characteristic polynomial

𝑐𝑇 (𝑧) = 𝑧5

(
𝑧 −

(
−1 + 𝑖

√
3

2

)) (
𝑧 −

(
−1 − 𝑖

√
3

2

))
such as

[𝑇]𝑒𝑒 =



0
0

0
0

0
−1+𝑖

√
3

2
−1−𝑖

√
3

2


Then, 𝑇2 + 𝑇 + 𝐼 only has an eigenvalue of 0. Thus, there is an upper-triangular matrix representation with a diagonal
of 0s for some basis of C7. This implies that 𝑇2 + 𝑇 + 𝐼 must be nilpotent.

26.3 Gershgorin Circle Theorem and Perron-Frobenius Theorem

Theorem 26.4: Gershgorin Circle Theorem
Let 𝐴 ∈ M𝑛 (C). For each 𝑖 ∈ {1, . . . , 𝑛}, consider 𝑅𝑖 =

∑
𝑗≠𝑖

��𝑎𝑖 𝑗 ��, i.e., 𝑅𝑖 is the sum of the absolute values of the
non-diagonal entries of the 𝑖th row. Consider 𝐷 (𝑎𝑖𝑖 , 𝑅𝑖) ⊆ C to be the closed disk of radius 𝑅𝑖 centered at 𝑎𝑖𝑖 . Then,
each eigenvalue of 𝐴 lies in at least one of the Gershgorin disks 𝐷 (𝑎𝑖𝑖 , 𝑅𝑖).
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Proof: Let _ be an eigenvalue of 𝐴 and 𝑣 a _-eigenvector of 𝐴. Scale 𝑣 so that one component 𝑣𝑖 of 𝑣 is equal to 1 and all other
components have absolute value ≤ 1. Thus, ∑︁

𝑗

𝑎𝑖 𝑗𝑣 𝑗 = _𝑣𝑖∑︁
𝑗≠𝑖

𝑎𝑖 𝑗𝑣 𝑗 + 𝑎𝑖𝑖 = _

So,

|_ − 𝑎𝑖𝑖 | =
�����∑︁
𝑗≠𝑖

𝑎𝑖 𝑗𝑣 𝑗

����� ≤ ∑︁
𝑗≠𝑖

��𝑎𝑖 𝑗 ����𝑣 𝑗

�� ≤ ∑︁
𝑗≠𝑖

��𝑎𝑖 𝑗 �� = 𝑅𝑖

Note 26.1
The same result holds for the columns replacing the rows as well, by applying the theorem to 𝐴𝑇 (since 𝐴 and 𝐴𝑇 have
the same eigenvalues).

Theorem 26.5: Perron-Frobenius Theorem
Suppose that 𝐴 is an 𝑛 × 𝑛 matrix with only positive entries. Consider the eigenvalues of 𝐴C. There is a unique
eigenvalue _ of 𝐴C that has the largest absolute value among the eigenvalues of 𝐴C. This _ is strictly positive and real
and 𝐸 (_, 𝑇) = 1 for this eigenvalue. There is also a _-eigenvector 𝑣 with strictly positive entries.

Proof: There is no easy proof of this theorem. A famous one goes through Brouwer’s fixed point theorem. Some use Gelfand’s
spectral radius formula:

max {|_ | | _ is an eigenvalue of 𝐴C} = lim
𝑛→∞

∥𝐴𝑛∥
1
𝑛

which in itself is a famous result of functional analysis. However, the main point is that most (if not all) proofs of this theorem
require some degree of topology and analysis that is not usually covered at an undergraduate level.
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27 Lecture 27

27.1 Multilinear Algebra and Determinants

Definition 27.1: Alternating 𝑘-Form/𝑘-Tensor
Let 𝑉 be a vector space with dim𝑉 = 𝑛 and 𝑘 ≤ 𝑛. Then, 𝜙 : 𝑉 𝑘 ↦→ F is an alternating 𝑘-form/𝑘-tensor on 𝑉 if

1. 𝜙 is multilinear, i.e., linear in each variable of 𝜙:

𝜙(𝑣1, . . . , 𝑣 𝑗 + 𝑤 𝑗 , . . . , 𝑣𝑘) = 𝜙(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑘) + 𝜙(𝑣1, . . . , 𝑤 𝑗 , . . . , 𝑣𝑘)
𝜙(𝑣1, . . . , 𝑐𝑣 𝑗 , . . . , 𝑣𝑘) = 𝑐𝜙(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑘)

2. 𝜙 is alternating:
𝜙(𝑣1, . . . , 𝑣 𝑗 , . . . , 𝑣𝑙 , . . . , 𝑣𝑘) = −𝜙(𝑣1, . . . , 𝑣𝑙 , . . . , 𝑣 𝑗 , . . . , 𝑣𝑘)

for all 𝑙 ≠ 𝑗 (i.e., switching 𝑣 𝑗 and 𝑣𝑙 introduces a negative sign).

Definition 27.2: 𝑘-Tensor
If 𝜙 : 𝑉 𝑘 ↦→ F satisfies multilinearity but not necessarily the alternating property, then 𝜙 is a 𝑘-tensor on 𝑉 .

Theorem 27.1
If dim𝑉 = 𝑛, the space of 𝑘-tensors on 𝑉 has dimension 𝑛𝑘 .

Proof: Proof sketch: If 𝜙 is a 𝑗-tensor on 𝑉 and 𝜓 is a 𝑙-tensor on 𝑉 , then

(𝜙 ⊗ 𝜓) (𝑣1, . . . , 𝑣 𝑗 , 𝑣 𝑗+1, . . . , 𝑣 𝑗+𝑙) = 𝜙(𝑣1, . . . , 𝑣 𝑗 ) · 𝜙(𝑣 𝑗+1, . . . , 𝑣 𝑗+𝑙)

defines a 𝑗 + 𝑙 tensor on 𝑉 .
If 𝑣1, . . . , 𝑣𝑛 is a basis for 𝑉 and 𝜙1, . . . , 𝜙𝑛 is the dual basis for 𝑉 (i.e., 𝜙𝑖 (𝑣 𝑗 ) = 𝛿𝑖 𝑗 for each 𝑖, 𝑗), then

𝜙(𝑣 𝑗1 , . . . , 𝑣 𝑗𝑘 ) = (𝜙𝑖1 ⊗ · · · ⊗ 𝜙𝑖𝑘 ) (𝑣 𝑗1 , . . . , 𝑣 𝑗𝑘 ) = 𝜙𝑖1 (𝑣 𝑗1 ) · · · · · 𝜙𝑖𝑘 (𝑣 𝑗𝑘 ) = 𝛿𝑖1 , 𝑗1 · · · · · 𝛿𝑖𝑘 , 𝑗𝑘

is a 𝑘-tensor on 𝑉 . The set of all 𝜙𝑖1 ⊗ · · · ⊗ 𝜙𝑖𝑘 , as the indices 𝑖1, . . . , 𝑖𝑘 each vary from 1 to 𝑛 (repetition allowed), give a basis
for the space of all 𝑘-tensors on 𝑉 . Thus, the space of 𝑘-tensors has dimension 𝑛𝑘 .

What about alternating tensors? If 𝜙 is a 𝑘-tensor, define

Alt(𝜙) (𝑣1, . . . , 𝑣𝑘) =
1

𝑘!

∑︁
𝜎∈𝑆𝑘

(sgn𝜎)𝜙
(
𝑣𝜎 (1) , . . . , 𝑣𝜎 (𝑘 )

)
Here, 𝑆𝑘 is the set of permutations of {1, 2, . . . , 𝑘}, i.e., the bijections between {1, 2, . . . , 𝑘} ↦→ {1, 2, . . . , 𝑘}. Therefore, 𝑆𝑘
has a cardinality of 𝑘! (hence the 𝑘! in the denominator above). We define the sign function as

sgn𝜎 =

{
1 if 𝜎 has an even number of “inversions”
−1 if 𝜎 has an odd number of “inversions”

These definitions seem a bit abstract. Let’s work through a concrete example:

Example 27.1
Consider 𝜎 ∈ 𝑆4 given by

𝜎(1) = 2

𝜎(2) = 3
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𝜎(3) − 1

𝜎(4) = 4

There are two inversions here since 1 < 3 but 𝜎(1) > 𝜎(3) and 2 < 3 but 𝜎(2) > 𝜎(3). Thus, sgn𝜎 = 1.

Example 27.2
Now consider,

𝜎(1) = 3

𝜎(2) = 4

𝜎(3) = 1

𝜎(4) = 2

There are 4 inversions here since 1 < 3 and 1 < 4 but𝜎(1) > 𝜎(4) > 𝜎(3) and 2 < 3 and 2 < 4 but𝜎(2) > 𝜎(4) > 𝜎(3).
Thus, sgn𝜎 = 1 this time as well.

Note 27.1
It isn’t difficult to show that 𝑆𝑘 has 𝑘!

2 even permutations and 𝑘!
2 odd permutations (see any abstract algebra textbook).

Example 27.3
If 𝜙1 and 𝜙2 are 1-tensors, then

Alt(𝜙1 ⊗ 𝜙2) =
1

2
(𝜙1 ⊗ 𝜙2 − 𝜙2 ⊗ 𝜙1)

If 𝜙1, 𝜙2 and 𝜙3 are 1-tensors, then,

Alt(𝜙1 ⊗ 𝜙2 ⊗ 𝜙3) =
1

6
(𝜙1 ⊗ 𝜙2 ⊗ 𝜙3 − 𝜙2 ⊗ 𝜙1 ⊗ 𝜙3 − 𝜙3 ⊗ 𝜙2 ⊗ 𝜙1

− 𝜙1 ⊗ 𝜙3 ⊗ 𝜙2 + 𝜙2 ⊗ 𝜙3 ⊗ 𝜙1 + 𝜙3 ⊗ 𝜙1 ⊗ 𝜙2)

Thus, we say Alt(𝜙) is “totally antisymmetric,” i.e., Alt(𝜙1 ⊗ 𝜙2) = −Alt(𝜙2 ⊗ 𝜙1).

Definition 27.3: Exterior Product
If 𝜙 is a 𝑘-form and 𝜓 is an 𝑙-form, we define the “wedge” or exterior product between them as

𝜙 ∧ 𝜓 =
(𝑘 + 𝑙)!
𝑘!𝑙!

Alt(𝜙 ⊗ 𝜓)

In other words,

(𝜙 ∧ 𝜓) (𝑣1, . . . , 𝑣𝑘+𝑙) =
1

𝑘!𝑙!

∑︁
𝜎∈𝑆𝑘+𝑙

sgn(𝜎)𝜙(𝑣𝜎 (1) , . . . , 𝑣𝜎 (𝑘 ) )𝜓(𝑣𝜎 (𝑘+1) , . . . , 𝑣𝜎 (𝑘+𝑙) )

The purpose of the binomial coefficient above is to sort of act like a normalization constant — it ensures that if 𝑒1, . . . , 𝑒𝑛 is the
standard basis of R𝑛 and 𝜙1, . . . , 𝜙𝑛 is the dual basis, then (𝜙𝑖1 ⊗ · · · ⊗ 𝜙𝑖𝑛 ) (𝑒𝑖1 , . . . , 𝑒𝑖𝑛 ) = 1.

Theorem 27.2
If dim𝑉 = 𝑛 and 𝑣1, . . . , 𝑣𝑛 is a basis of𝑉 with the corresponding dual basis 𝜙1, . . . , 𝜙𝑛, then the set of all 𝜙𝑖1 ∧· · ·∧𝜙𝑖𝑛
for 1 ≤ 𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑘 ≤ 𝑛 is a basis for the space of alternating 𝑘-forms on 𝑉 .

The dimension of the space above is
(𝑛
𝑘

)
= 𝑛!

𝑘!(𝑛−𝑘 )! for 𝑘 ≤ 𝑛. In particular, if dim𝑉 = 𝑛, the space of alternating 𝑛-forms has
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dimension 1. This motivates the following definition:

Definition 27.4: Determinant
Let 𝐴 ∈ M𝑛 (C) or M𝑛 (R). Identify 𝐴 by its columns, i.e., identify M𝑛 (C) with C𝑛 × · · · × C𝑛 = (C𝑛)𝑛 = C𝑛

2
. Since

C𝑛 is 𝑛-dimensional, by the theorem above, there is a unique alternating 𝑛-form 𝜙 on C𝑛 such that

𝜙(𝑒1, . . . , 𝑒𝑛) = 𝜙(𝐼𝑛) = 1

This unique normalized alternating 𝑛-form 𝜙 : M𝑛 (C) � (C𝑛)𝑛 ↦→ C is called the determinant. That is, det(𝐴) = 𝜙(𝐴).

Alternating 𝑛-forms and the determinant play a fundamental role in defining the nature of an “orientation” on a vector space or,
more generally, a differentiable manifold. Choose any basis of an 𝑛-dimensional vector space 𝑉 . Any other basis of 𝑉 is related
to the first one via a change of basis matrix, which is invertible. The two bases are said to define the same orientation on 𝑉 if
this change of basis matrix has det > 0. Otherwise, the bases are considered as having opposite orientations. This divides the
set of all bases of 𝑉 into two disjoint classes. Usually, the class including “the standard basis” (if 𝑉 = R𝑛 or C𝑛) is taken to be
the “usual or standard” orientation.

Definition 27.5: Permutation Definition of the Determinant
Let 𝐴 be an 𝑛 × 𝑛 matrix with columns 𝑎1, . . . , 𝑎𝑛. Then,

det(𝐴) =
∑︁
𝜎∈𝑆𝑛

sgn(𝜎)
∏

1≤𝑖≤𝑛
𝑎𝑖,𝜎 (𝑖)

Compare this to the definition of an alternating 𝑛-tensor:

Alt(𝜙) (𝑣1, . . . , 𝑣𝑛) =
1

𝑛!

∑︁
𝜎∈𝑆𝑛

sgn(𝜎)𝜙
(
𝑣𝜎 (1) , . . . , 𝑣𝜎 (𝑛)

)
Since the determinant is a normalized 𝑛-tensor, we can essentially get rid of the 𝑛! term. Moreover, from the definition of tensor
products, we already know that

𝜙 = 𝜙1 ⊗ · · · ⊗ 𝜙𝑛 =⇒ 𝜙(𝑣𝜎 (1) , . . . , 𝑣𝜎 (𝑛) ) = 𝜙1
(
𝑣𝜎 (1)

)
· · · · · 𝜙𝑛

(
𝑣𝜎 (𝑛)

)
=

∏
1≤𝑖≤𝑛

𝜙𝑖
(
𝑣𝜎 (𝑖)

)
Here, it follows that 𝜙𝑖 (𝑎 𝑗 ) = 𝑎𝑖 𝑗 where 𝑎 𝑗 is the 𝑗 th column of the matrix 𝐴.

Example 27.4
The set 𝑆2 contains only two permutations:

𝜎(1) = 1, 𝜎(2) = 2 and 𝜏(1) = 2, 𝜏(2) = 1

Then, sgn(𝜎) = 1 and sgn(𝜏) = −1. So, for an arbitrary 2 × 2 matrix, we have

det

[
𝑎11 𝑎12
𝑎21 𝑎22

]
= (1) (𝑎11 ∗ 𝑎22) + (−1) (𝑎12 ∗ 𝑎21) = 𝑎11𝑎22 − 𝑎12𝑎21

Example 27.5
Let 𝐴 be a 3 × 3 matrix. Then, 𝑆3 consists of 3! = 6 permutations. Based on example 27.2, we set

det(𝐴) = 𝑎11𝑎22𝑎33 − 𝑎12𝑎21𝑎33 − 𝑎13𝑎22𝑎31 − 𝑎11𝑎23𝑎32 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32

Key observations regarding the determinant definition given above:

• When we expand out ∑︁
𝜎∈𝑆𝑛

sgn(𝜎)
∏
𝑖≤𝑛

𝑎𝑖,𝜎 (𝑖)

we see that each term in the product contains exactly one term from each row of 𝐴, namely 𝑎𝑖,𝜎 (𝑖) .
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• Moreover, each 𝑎 𝑗 ,𝑘 is 𝑎 𝑗 ,𝜎 ( 𝑗 ) for some 𝜎 ∈ 𝑆𝑛.

From these two observations, and possibly some re-indexing, we can conclude the following statements about determinants:

1. If 𝐵 results from 𝐴 when a single row of it is multiplied by a scalar 𝑐, then det(𝐵) = 𝑐 det(𝐴).

2. If 𝐵 results from 𝐴 by switching two rows of 𝐴, then det(𝐵) = −det(𝐴).

3. If 𝐵 results from 𝐴 by replacing row 𝑘 of 𝐴 with row(𝑘) + 𝑐 · row( 𝑗), then det(𝐵) = det(𝐴).

Note 27.2
Among many other things, statements 1 and 2 imply that if 𝐴 has two repeated rows, then det(𝐴) = 0. If 𝐴 has a row of
all zeroes, then det(𝐴) = 0.

Since det(𝐵) is either 𝑐 · det(𝐴) for some 𝑐 ≠ 0, − det(𝐴) or det(𝐴), if 𝐵 results from 𝐴 after some sequence of elementary
row operations (à la Gaussian elimination), it holds that det(𝐵) = 0 iff det(𝐴) = 0.
Consider RREF(𝐴). We know that RREF(𝐴) = 𝐼𝑛 iff 𝐴 is invertible. Note that det(𝐼𝑛) = 1 since 𝑏11 · 𝑏22 · · · · · 𝑏𝑛𝑛 = 1 and∏

1≤𝑖≤𝑛 𝑏𝑖,𝜎 (𝑖) = 0 for all permutations where 𝜎(𝑖) = 𝑗 ≠ 𝑖. Recall that RREF(𝐴) has at least one row of all zeros iff 𝐴 is not
invertible. Therefore, det(RREF(𝐴)) = 0 iff 𝐴 is not invertible, but det(RREF(𝐴)) = 1 iff 𝐴 is invertible.
Combining these observations with what we have above, we have essentially proven that det(𝐴) ≠ 0 iff 𝐴 is invertible.

Theorem 27.3
det(𝐴𝐵) = det(𝐴) det(𝐵) for all 𝑛 × 𝑛 matrices 𝐴 and 𝐵.

Proof: Note that 𝐴𝐵 is not invertible iff at least one of 𝐴 and 𝐵 is not invertible. In that case, det(𝐴𝐵) and det(𝐴) det(𝐵) are
both zero. Now, we need to show the case when 𝐴 and 𝐵 are both invertible.
Recall that an elementary matrix is the result of applying a single elementary row operation to 𝐼𝑛. For instance,

1 0 0
0 0 1
0 1 0


is an elementary matrix that results from swapping rows 2 and 3 of 𝐼3. If 𝐸 is the elementary matrix corresponding to a row
operation, then 𝐵 = 𝐸𝐴 is the result of applying that row operation fo 𝐴. For example,[

𝑎21 𝑎22
𝑎11 𝑎12

]
=

[
0 1
1 0

] [
𝑎11 𝑎12
𝑎21 𝑎22

]
implements switching rows 1 and 2 of 𝐴.
Since 𝐴 is invertible iff RREF(𝐴) = 𝐼𝑛, then 𝐴 is invertible iff RREF(𝐴) = 𝐼𝑛 = 𝐸𝑘 . . . 𝐸1𝐴 for some elementary matrices
𝐸1, . . . , 𝐸𝑘 . However,

𝐴 = (𝐸𝑘 · · · · · 𝐸1)−1 = (𝐸1)−1 · · · · · (𝐸𝑘)−1

The inverse of an elementary matrix is an elementary matrix too. Thus, 𝐴 is invertible iff 𝐴 is a product of elementary matrices.
Observe that 𝐸 = 𝐸𝐼𝑛 is the result of applying an elementary row operation to 𝐼𝑛 and det(𝐼𝑛) = 1, so det(𝐸) = 𝑐, −1 or 1
depending on the type of row operation that 𝐸 implements. Thus, if 𝐵 results from 𝐴 by a row operation implemented by 𝐸1, we
get that det(𝐵) = det(𝐸𝐴) = det(𝐸) det(𝐴). Furthermore, det(𝐸2 (𝐸1𝐴)) = det(𝐸2) det(𝐸1𝐴) = det(𝐸2) det(𝐸1) det(𝐴),
etc. Carrying out this process inductively yields that det(𝐵𝐴) = det(𝐵) det(𝐴) iff 𝐵 = 𝐸 𝑗 · · · · ·𝐸1 is invertible. In other words,
det(𝐵𝐴) = det(𝐵) det(𝐴) for any 𝑛 × 𝑛 matrices 𝐴 and 𝐵.

Theorem 27.4
If 𝐴 is invertible, then det

(
𝐴−1) = 1

det(𝐴) .

Proof: 1 = det(𝐼𝑛) = det
(
𝐴𝐴−1) = det(𝐴) det

(
𝐴−1) =⇒ det

(
𝐴−1) = 1

det(𝐴)
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Theorem 27.5
If 𝐴 and 𝐵 are similar, then det(𝐴) = det(𝐵).

Proof: If 𝐵 = 𝑆−1𝐴𝑆, then det(𝐵) = 1
det(𝑆) det(𝐴) det(𝑆) = det(𝐴)

Theorem 27.6
If 𝐴 is an upper-triangular 𝑛 × 𝑛 matrix, then det(𝐴) = 𝑎11 · · · · · 𝑎𝑛𝑛, i.e., the product of the terms along the diagonal.

Proof: Since 𝐴 is upper-triangular, it follows that 𝑎1,𝜎 (1) · · · · · 𝑎𝑛,𝜎 (𝑛) = 0 unless 𝑎1,𝜎 (1) = 𝑎11, 𝑎2,𝜎 (2) = 𝑎22, 𝑎3,𝜎 (3) = 𝑎33
and so on until the 𝑛th row. That is, for all permutations other than the identity permutation (𝜎𝐼 (𝑖) = 𝑖 for all 𝑖 ≤ 𝑛), the product
above will evaluate to 0. The sign of the identity permutation is 1 since there are no inversions. Thus,

det(𝐴) =
∑︁
𝜎∈𝑆𝑛

sgn(𝜎)
∏
𝑖≤𝑛

𝑎𝑖,𝜎 (𝑖) = (+1) · 𝑎11 · · · · · 𝑎𝑛𝑛 +
∑︁

𝜎∈𝑆𝑛\{𝜎𝐼 }
sgn(𝜎) · 0 = 𝑎11𝑎22 · · · 𝑎𝑛𝑛

Recall that if 𝑇 ∈ L(𝑉) has an upper triangular matrix representation, then its eigenvalues are entries along the main diagonal.
We also know that the eigenvalues of 𝑇 are similarity-invariant, i.e. if 𝑆 ∈ L(𝑉) is an isometry, then 𝑇 and 𝑆−1𝑇𝑆 have the
same eigenvalues with the same multiplicities. Thus, we could also simply define det(𝑇) to equal the product of its eigenvalues
with multiplicity (in fact, this is how Axler does it).
If 𝑉 is real, then 𝑇C ∈ L(𝑉C) is complex and, hence, has an upper triangular matrix representation. Then, by our last theorem,
we can define det(𝑇) to be the product of the eigenvalues, with multiplicity, of 𝑇C (if it is real) or 𝑇 (if it is complex). It then
becomes clear immediately that det(𝑇) ≠ 0 iff 𝑇 is invertible. Moreover, det(𝑆 ◦ 𝑇) = det(𝑆) det(𝑇).

27.2 Geometric Interpretation of Determinants

Let 𝑇 be a linear transformation and let 𝑣1 = 𝑇 (𝑒1) and 𝑣2 = 𝑇 (𝑒2). Then,

𝐴 =
[
𝑇 (𝑒1) 𝑇 (𝑒2)

]
=

[
𝑣1 𝑣2

]
is the matrix that applies the transformation 𝑇 so some vector 𝑣 ∈ R2. Consider the area of the parallelogram spanned by 𝑣1, 𝑣2
— this is equal to ∥𝑣1∥∥𝑣2∥ sin \ where \ is the angle spanned between 𝑣1 and 𝑣2.
Note that the height of the parallelogram is given by 𝑣⊥2 , the component of 𝑣2 orthogonal to 𝑣1. Thus, the area above can be
rewritten as ∥𝑣1∥

𝑣⊥2 . We claim that
|det(𝐴) | = ∥𝑣1∥

𝑣⊥2 
Let 𝐴 = 𝑄𝑅 (the QR decomposition of a matrix can be achieved by performing Gram-Schmidt on its columns), where 𝑄 is
orthogonal, and 𝑅 is upper triangular with diagonal entries 𝑟11 = ∥𝑣1∥ and 𝑟22 =

𝑣2 − projspan(𝑣1 ) 𝑣2
 = 𝑣⊥2 . However, note

that 𝐼 = 𝑄𝑇𝑄 =⇒ det(𝑇) = det
(
𝑄𝑇

)
det(𝑄) = det(𝑄)2 =⇒ |det(𝑄) | = 1. Therefore,

|det(𝐴) | = |det(𝑄𝑅) | = |det(𝑄) | |det(𝑅) | = ∥𝑣1∥
𝑣⊥2 

Thus, |det(𝐴) | is the area of the parallelogram spanned by its columns. This generalizes to

Theorem 27.7
Let 𝐴 be an 𝑛 × 𝑛 matrix with 𝑣1, . . . , 𝑣𝑛 as its columns. Then, |det(𝐴) | = ∥𝑣1∥

𝑣⊥2  . . . 𝑣⊥𝑛  where

𝑣⊥𝑘 = 𝑣𝑘 − projspan(𝑣1 ,...,𝑣𝑘 ) 𝑣𝑘

So, if 𝐴 is a 3 × 3 matrix, then |det(𝐴) | is the volume of the parallelepiped determined by 𝑣1, 𝑣2 and 𝑣3. Using the linearity of
a linear transformations, it also follows that
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Theorem 27.8
If 𝑇 : R𝑛 ↦→ R𝑛, then |det(𝑇) | = 𝑛−volume of 𝑇 (Ω)

𝑛−volume of Ω where Ω is any closed bounded region in R𝑛.

Theorem 27.9: Change of Variables in Integration
Let Ω be an open subset of R𝑛 and 𝜎 : Ω ↦→ R𝑛 is continuously differentiable at every point of Ω. If 𝑓 is integrable on
𝜎(Ω), then ∫

𝜎 (Ω)
𝑓 (𝑦) d𝑦 =

∫
Ω

𝑓 (𝜎(𝑥)) |det𝜎′ (𝑥) | d𝑥

where 𝜎′ (𝑥) is the Jacobian of 𝜎.
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